SYNC I/O Guide
Version 1.1

For Pro Tools TDM 6.x Systems on Windows or Macintosh

Digidesign
2001 Junipero Serra Boulevard
Daly City, CA 94014-3886 USA
tel: 650·731·6300
fax: 650·731·6399

Technical Support (USA)
tel: 650·731·6100
fax: 650·731·6384

Product Information (USA)
tel: 650·731·6102
tel: 800·333·2137

International Offices
Visit the Digidesign Web site for contact information

Web Site
www.digidesign.com
Copyright
This guide is copyrighted ©2004 by Digidesign, a division of Avid Technology, Inc. (hereafter “Digidesign”), with all rights reserved. Under copyright laws, this guide may not be duplicated in whole or in part without the written consent of Digidesign.
DIGIDESIGN, AVID and PRO TOOLS are trademarks or registered trademarks of Digidesign and/or Avid Technology, Inc. All other trademarks are the property of their respective owners.
Product features, specifications, system requirements and availability are subject to change without notice.
PN 932914128-00 REV A 09/04

Communications & Safety Regulation Information

Compliance Statement
The model SYNC I/O complies with the following standards regulating interference and EMC:
• FCC Part 15 Class A
• EN55103 – 1, environment E4
• EN55103 – 2, environment E4
• AS/NZS 3548 Class A
• CISPR 22 Class A

Radio and Television Interference
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules.

Communications Statement
This equipment has been tested to comply with the limits for a Class A digital device. Changes or modifications to this product not authorized by Digidesign, Inc., could void the Certification and negate your authority to operate the product. This product was tested for CISPR compliance under conditions that included the use of peripheral devices and shielded cables and connectors between system components. Digidesign recommends the use of shielded cables and connectors between system components to reduce the possibility of causing interference to radios, television sets, and other electronic devices.

Safety Statement
This equipment has been tested to comply with USA and Canadian safety certification in accordance with the specifications of UL Standards; UL6500 and Canadian CSA standard; CSA C22.2 No.1-M90. Digidesign Inc., has been authorized to apply the appropriate UL & CUL mark on its compliant equipment.

Important Safety Instructions

1) Read these instructions.
2) Keep these instructions.
3) Heed all warnings.
4) Follow all instructions.
5) Do not use this apparatus near water.
6) Clean only with dry cloth.
7) Do not block any ventilation openings. Install in accordance with the manufacturer’s instructions.
8) Do not install near any heat sources such as radiators, heat registers, stoves, or other apparatus (including amplifiers) that produce heat.
9) Do not defeat the safety purpose of the polarized or grounding-type plug. A polarized plug has two blades with one wider than the other. A grounding type plug has two blades and a third grounding prong. The wide blade or the third prong are provided for your safety. If the provided plug does not fit into your outlet, consult an electrician for replacement of the obsolete outlet.
10) Protect the power cord from being walked on or pinched particularly at plugs, convenience receptacles, and the point where they exit from the apparatus.
11) Only use attachments/accessories specified by the manufacturer.
12) Use only with the cart, stand, tripod, bracket, or table specified by the manufacturer, or sold with the apparatus. When a cart is used, use caution when moving the cart/apparatus combination to avoid injury from tip-over.
13) Unplug this apparatus during lightning storms or when unused for long periods of time.
14) Refer all servicing to qualified service personnel. Servicing is required when the apparatus has been damaged in any way, such as power-supply cord or plug is damaged, liquid has been spilled or objects have fallen into the apparatus, the apparatus has been exposed to rain or moisture, does not operate normally, or has been dropped.
contents

Chapter 1. Introduction
- SYNC I/O Features .. 2
- System Requirements ... 3
- Digidesign Registration ... 4
- About the Pro Tools Guides .. 4
- About www.digidesign.com ... 5

Chapter 2. Installation and Configuration
- Hardware Connections .. 7
- MachineControl ... 10
- Synchronization and Time Code Connections to Machines, Decks, and Other Devices 11
- Software Installation .. 13
- Configuring Pro Tools HD and SYNC I/O 14
- MachineControl Configuration 18
- Software Configuration for SYNC I/O Setup Software Utility ... 18
- Configuring Pro Tools 24 MIX with SYNC I/O 19
- Updating SYNC I/O Firmware .. 19
- Troubleshooting ... 21

Chapter 3. SYNC I/O Hardware and Software
- SYNC I/O Front Panel .. 23
- SYNC I/O Back Panel .. 26
- SYNC I/O Setup Software Utility 28

Chapter 4. Using SYNC I/O
- SYNC I/O Controls in Pro Tools, SYNC I/O Setup Software Utility, and the SYNC I/O Front Panel 34
- Front Panel Generator/Parameter Switches 35
- Clock References and Options 36
- Positional Reference and Options 42
Compensating for Time Code Offsets ... 47
Generating & Regenerating Time Code.. 47
Generating a Window Burn .. 53

Chapter 5. Additional Operational Information 57
Front Panel Generator/Parameter Controls 57
Using Fader Start .. 62
Calibrating the SYNC I/O Oscillator .. 63
Restoring Factory Settings .. 64
Managing and Selecting Video Inputs ... 65

Appendix A. Additional Synchronization Information 67
Video and VITC Signals ... 67
LTC Signals ... 68
Auto-Switch LTC/VITC .. 68
Digital Clock Signal Types ... 69
Bi-Phase/Tach .. 70
Pilot Tone ... 71

Appendix B. Technical Specifications .. 73
Appendix C. Wiring Diagrams and Pin Assignments 81
LTC .. 81
Bi-Phase/GPI/Pilot .. 82
Bi-phase/Tach OptoCoupler Input ... 83
GPI Relay Outputs ... 84
GPI (TTL)/MTC Outputs ... 85
GPI (opto) Inputs ... 86
Connector Pin Assignments .. 87
SYNC I/O Serial Cable Pin Assignments 89
Bi-phase/Tach/GPI/Pilot Port Interfacing Notes 89

Index ... 91
Welcome to the Digidesign SYNC I/O, a multi-purpose synchronization peripheral for Pro Tools systems. The SYNC I/O supports all Pro Tools sample rates, and synchronizes to all major time code and clock reference standards used in audio, video, film, and multimedia production.

SYNC I/O can also be used as a stand-alone synchronization device.

SYNC I/O with Pro Tools

Pro Tools|HD With Pro Tools|HD, SYNC I/O provides highly accurate lock to time code. Most SYNC I/O settings are available directly from within Pro Tools.

Pro Tools|24 MIX With Pro Tools|24 MIX, SYNC I/O supports all features of the Digidesign USD (Universal Slave Driver), and emulates a USD on-screen in Pro Tools.

SYNC I/O in Stand-Alone Mode

SYNC I/O can be used as a stand-alone synchronization converter, time code generator, clock generator and time code character generator. Throughout this guide, the term *stand-alone* refers to systems using SYNC I/O but *not* using Pro Tools. In stand-alone mode, SYNC I/O is connected to time code and clock signals as needed, and configured from the front panel.

Optionally, while in stand-alone mode, the SYNC I/O can be controlled remotely from a computer using the SYNC I/O Setup software utility.

SYNC I/O Setup Software Utility (Windows Only)

The SYNC I/O Setup software utility can be used with or without Pro Tools to control all SYNC I/O features from any supported Windows computer. The SYNC I/O Setup utility also provides firmware updating capabilities for SYNC I/O.
SYNC I/O Features

SYNC I/O supports all Pro Tools|HD sample rates: 44.1, 48, 88.2, 96, 176.4, and 192 kHz. SYNC I/O provides the following synchronization features with Pro Tools|HD. (Not all of these features are available on Pro Tools|24 MIX-series systems.)

Supported Positional Reference Sources
- LTC
- VITC
- Bi-phase/Tach
- Internal Time Code Generator
- Serial Time Code

Supported Clock Reference Sources
- Loop Sync (HD only)
- Reference Video
- Composite Video Input
- Word Clock
- AES/EBU Null
- Pilot Tone
- Internal Crystal
- Bi-phase/Tach
- LTC

Output and Generation
- Loop Sync (HD only)
- Digidesign Super Clock (256x sample clock)
- Word Clock (1x sample clock)
- AES/EBU null clock (AES “digital black”)
- VITC (if a video input is present)
- LTC
- MIDI Time Code (MTC)
- Two 9-pin Sony P-2 machine protocol ports, for MachineControl-enabled systems

Other Features
- Front panel controls and a large LED display of time code and parameters
- Integrated control of SYNC I/O from Pro Tools
- Time Code Character Generator
- Remote 9-Pin Deck Emulation mode
- Fader start, provided through GPI output, for remote transport control from select Pro Tools fader movement
- SYNC I/O Setup software utility (Windows only)
- SYNC I/O firmware that can be updated at any time for future upgrades

Available Controls in Stand-Alone Mode

If you are using SYNC I/O in stand-alone mode (without Pro Tools), you can control it with the SYNC I/O Setup software utility (Windows only), or with the switches on the front panel of the SYNC I/O.

SYNC I/O Setup Software Utility (Windows Only)

SYNC I/O Setup gives you access to all SYNC I/O controls. The following SYNC I/O parameters are accessible only through Pro Tools or the SYNC I/O Setup software utility:
- Variable Speed Override (VSO)
- Window burn parameters: While you can turn the Window burn on or off from the front panel, you cannot configure its display parameters without Pro Tools or SYNC I/O Setup.

See “SYNC I/O Controls in Pro Tools, SYNC I/O Setup Software Utility, and the SYNC I/O Front Panel” on page 34.
System Requirements

For complete system requirements, visit the compatibility page of the Digidesign Web site (www.Digidesign.com/compato).

Compatibility Information

Digidesign can only assure compatibility and provide support for hardware and software it has tested and approved.

For a list of Digidesign-qualified computers, operating systems, hard drives, machine controllers and third-party devices, refer to the latest compatibility information on the Digidesign Web site (www.digidesign.com/compato).

SYNC I/O with Pro Tools

To use SYNC I/O with Pro Tools, the following is required:

- Pro Tools|HD-series or Pro Tools|24 MIX-series system running on a Digidesign-qualified computer and version of Windows or Mac OS.
- An available DigiSerial port on the system’s HD Core or MIX Core card.
- An 8-pin to 8-pin serial cable (included) to connect SYNC I/O to the DigiSerial port on a Pro Tools PCI card.

💡 If you use a custom serial cable between Pro Tools and SYNC I/O, be sure it supports hardware handshaking. See Appendix C, “Wiring Diagrams and Pin Assignments.”

SYNC I/O Setup Software Utility

(Windows Only)

The optional SYNC I/O Setup software utility requires the following:

- A Digidesign-qualified Windows computer.
- An available COM port or serial port on the computer to connect to SYNC I/O. (You cannot run the SYNC I/O Setup utility from the DigiSerial port on Pro Tools PCI cards.)

💡 The computer requirements for the SYNC I/O Setup utility are different from the computer requirements for Pro Tools. You can run SYNC I/O Setup from slower computers.

- Non-standard 8-pin to 9-pin cable to connect SYNC I/O to a COM port or serial port on a Windows computer. Wiring instructions for making the required cable are in Appendix C, “Wiring Diagrams and Pin Assignments.”
Digidesign Registration

Make sure to complete and return the registration card included with SYNC I/O. Registered users will receive periodic software update and upgrade notices. Refer to the registration card for information on technical support.

About the Pro Tools Guides

In addition to the printed guides that came with your system, PDF versions of the Pro Tools guides are installed automatically with Pro Tools in the Documentation folder in the Pro Tools folder. To view or print the PDF guides, install Acrobat Reader (included on the Pro Tools Installer CD-ROM).

About This Guide

This guide assumes:

- You understand the basics of synchronization and time code
- You know how to operate devices that send or receive time code such as a video deck
- You have an understanding of the time code requirements for your projects

This Guide covers SYNC I/O with Pro Tools TDM systems version 6.1 or later only.

Conventions Used in This Guide

Digidesign guides use the following conventions to indicate menu choices and key commands:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>File > Save Session</td>
<td>Choose Save Session from the File menu</td>
</tr>
<tr>
<td>Control+N</td>
<td>Hold down the Control key and press the N key</td>
</tr>
<tr>
<td>Control-click</td>
<td>Hold down the Control key and click the mouse button</td>
</tr>
<tr>
<td>Right-click (Windows)</td>
<td>Click with the right mouse button</td>
</tr>
</tbody>
</table>

The following symbols are used to highlight important information:

💡 User Tips are helpful hints for getting the most from your system.

⚠ Important Notices include information that could affect your data or the performance of your system.

├ Shortcuts show you useful keyboard or mouse shortcuts.

├ Cross References point to related sections in other Digidesign guides.

For versions of Pro Tools earlier than 6.1 that support SYNC I/O, refer to the compatibility pages of the Digidesign Web site (www.digidesign.com/compato) as well as earlier versions of this Guide.
About www.digidesign.com

The Digidesign Web site (www.digidesign.com) is your best source for information to help you get the most out of your Pro Tools system. The following are just a few of the services and features available.

Support Contact Digidesign Technical Support or Customer Service; download software updates and the latest online manuals; browse the Compatibility documents for system requirements; search the online Answerbase; join the worldwide Pro Tools community on the Digidesign User Conference.

Training and Education Become a certified Pro Tools Operator or Expert; study on your own using courses available online, or find out how you can learn in a classroom setting at a certified Pro Tools Training Center.

Products and Developers Learn about Digidesign products; download demo software; learn about our Development Partners and their plug-ins, applications, and hardware.

News and Events Get the latest news from Digidesign; sign up for a Pro Tools demo.

To learn more about these and other resources available from Digidesign, visit the Digidesign Web site (www.digidesign.com).
chapter 2

Installation and Configuration

Hardware Connections

The following are the primary hardware connections possible with SYNC I/O:

- AC Power
- Serial to a DigiSerial port on a Pro Tools PCI card, or a serial port on the computer
- Clock to Pro Tools audio interfaces (Loop Sync or Super Clock)
- 9-pin to external machines (requires Digidesign MachineControl)
- Synchronization, including positional and clock references to and from remote machines

Serial Connections

Serial to Pro Tools

Pro Tools systems require a serial connection between SYNC I/O and a Pro Tools Core card.

To connect SYNC I/O to a Pro Tools|HD system:

1. Make sure power is off on all equipment.
2. Connect one end of the included serial cable to the SYNC I/O Host Serial port.
3. Connect the other end to the DigiSerial port on your HD Core card. Do not use any other DigiSerial ports on other HD-series cards.
To connect SYNC I/O to a Pro Tools|24 MIX system:

1. Make sure power is off on all equipment.
2. Connect one end of the included serial cable to the SYNC I/O Host Serial port.
3. Connect the other end of the cable to the DigiSerial Port on your Pro Tools|HD or Pro Tools|24 MIX Core card.
4. Connect the rest of your equipment to SYNC I/O as described in “Synchronization and Time Code Connections to Machines, Decks, and Other Devices” on page 11.

Serial Connections for SYNC I/O Setup Software Utility

(Windows Only)

Any system using the optional SYNC I/O Setup software utility requires a serial connection from SYNC I/O to a supported Windows computer. (For compatibility information, see “System Requirements” on page 3.)

⚠️ The SYNC I/O Setup software utility will not control SYNC I/O through the DigiSerial port.

To connect SYNC I/O to a Windows computer for SYNC I/O Setup software utility:

1. Purchase or make the required 9-pin to 8-pin cable. For wiring details, see “SYNC I/O Serial Cable Pin Assignments” on page 89.
2. Make sure power is off on all equipment.
3. Connect the SYNC I/O Host Serial port to an available serial or COM port on your computer.
4. Restore power to SYNC I/O, and restart your computer.

Clock for Pro Tools Audio Interfaces

SYNC I/O must be connected to Pro Tools audio interfaces in the Loop Sync chain (Pro Tools|HD) or Slave Clock chain (Pro Tools|24 MIX).

Connecting Loop Sync for Pro Tools|HD

SYNC I/O supports Loop Sync, and can serve as Loop Sync Master. Loop Sync is a dedicated clock loop for synchronizing multiple HD-series interfaces. Loop Sync should only be used to connect multiple HD-series peripherals.
To connect SYNC I/O to Pro Tools|HD interfaces:

1. Using a BNC cable, connect the Loop Sync Out of the SYNC I/O to the Loop Sync In of your primary HD-series audio interface.

2. Connect the SYNC I/O Loop Sync In to the Loop Sync Out of your HD-series interface.

When using more than one HD-series audio interface, make SYNC I/O the first and last unit in the Loop Sync chain.

Loop Sync connections between SYNC I/O and a 96 I/O

When using more than one HD-series audio interface, make SYNC I/O the first and last unit in the Loop Sync chain.

Loop Sync in an expanded Pro Tools|HD system

Using Legacy Audio Interfaces with Pro Tools|HD

If you are using a Pro Tools|HD system that includes a legacy audio interface (an 888|24, 882|20, 1622, or ADAT Bridge audio interface), you will need to connect the Clock output of the HD system to the Slave Clock Input of the legacy interface.

Clock for SYNC I/O, a 96 I/O, and an 888|24 I/O

3. If you are connecting multiple legacy interfaces, daisy-chain their Slave Clock connections by connecting the Slave Clock Out of the first interface to the Slave Clock In of the next interface.

See the Getting Started with HD Guide for external clock configuration instructions.

Connecting Slave Clock for Pro Tools|24 MIX

To connect SYNC I/O to a Pro Tools|24 MIX-series audio interface:

1. Using a BNC cable, connect the SYNC I/O Word Clock Out to the Slave Clock In of your primary audio interface.

Clock from SYNC I/O to an 888|24
When Pro Tools launches, the SYNC I/O Word Clock Out port will switch to 256x Slave Clock output. In stand-alone use, you can manually configure the SYNC I/O for 256x Base Clock output using SYNC I/O Setup software utility (Windows only) or front panel controls.

MachineControl

On MachineControl-enabled Pro Tools systems, SYNC I/O supports Serial Deck Control mode and Remote 9-Pin Deck Emulation mode.

For best performance on Windows systems, use the COM ports on the Windows computer.

For best performance on Macintosh systems, use a Keyspan USA28x USB serial adapter.

Some devices, such as non-linear video decks, may work well on the SYNC I/O’s 9-pin ports.

As many as two machines can be connected to the two 9-pin Out ports on the SYNC I/O. You can control one machine at a time, and switch between them from within Pro Tools. These ports support all MachineControl modes except Remote 9-Pin Deck Emulation mode. For Remote Deck Emulation mode on Macintosh systems, a Keyspan USA28x USB serial adapter is required.

For more information on MachineControl connections and operation, refer to the MachineControl Guide.

Pro Tools|HD Systems

For more information on MachineControl connections and operation on Pro Tools|24 MIX systems, refer to the MachineControl Guide.

Serial Deck Control Mode

For Best Serial Deck Control

For best serial deck control, connect your deck as follows:

To connect a deck to a Windows computer:

- Connect the computer’s COM port to the machine, using the provided 9-pin RS-322 to RS-422 cable.

To connect a deck to a Macintosh computer:

1. Connect a Keyspan USA28x USB serial adapter (not provided) to a USB port on the computer.
2. Connect the provided male mini DIN-8 serial to male 9-pin D-sub Deck Control cable to the end of the adapter.
3. Connect the end of the cable to the machine.

For Limited Serial Deck Control (Non-Linear Decks Only)

- Connect a standard 9-pin cable from one of the 9-pin Out ports on the SYNC I/O to the 9-pin input of the machine. Due to performance limitations, this configuration should be used primarily with non-linear decks.
Remote 9-Pin Deck Emulation Mode

To connect a machine for Remote 9-Pin Deck Emulation mode (Windows Systems):

- Connect the Turnaround adapter to the RS-322 to RS-422 cable, and connect them from an available serial or COM port on your computer to the 9-pin output of the machine.

Do not use the DigiSerial port on your HD Core card or the 9-pin ports on the SYNC I/O for Remote 9-Pin Deck Emulation mode. The DigiSerial port should only be used for SYNC I/O connections, using a DigiSerial cable.

To connect a machine for Remote 9-Pin Deck Emulation mode (Macintosh Systems):

1. Connect a Keyspan USA28x USB serial adapter (not provided) to a USB port on the computer.

2. Connect the provided male mini DIN-8 serial to female 9-pin Deck Emulation cable to the end of the adapter.

3. Connect the end of the cable to the machine.

Do not use the DigiSerial port on your HD Core card or the 9-pin ports on the SYNC I/O for Remote 9-Pin Deck Emulation mode. The DigiSerial port should only be used for SYNC I/O connections, using a DigiSerial cable.

Synchronization and Time Code Connections to Machines, Decks, and Other Devices

The following sections describe connections required for different applications. For more information on time code applications, see Appendix A, “Additional Synchronization Information.”

Connecting a Video Source

This section describes connections required when using video and house video reference.

For SYNC I/O to resolve to house sync:

- Connect the house video reference/black burst signal to the Video Ref In port on the SYNC I/O.

The Video Ref ports are a non-terminated loop-through connection. If the Video Ref Out port is not used, then you must terminate it using the included 75-ohm BNC terminator.

For SYNC I/O to resolve directly to an incoming video signal:

- Connect the video signal to the SYNC I/O Video In port.
Character Generator for Window Burn

SYNC I/O can also generate a Window burn while using the same video source signal as the video reference. The following is one example setup for a window burn.

To use the SYNC I/O Time Code Character Generator to make a window burn:

1. Connect your video signal to a SYNC I/O Video Ref In port.
2. Connect the SYNC I/O Video Ref Out port to the Video In port.
3. Connect the SYNC I/O Video Out port to other video devices.

Connecting LTC

SYNC I/O provides LTC input and output connectors.

To input LTC to SYNC I/O:

- Connect the LTC signal from your machine, synchronizer or other source to the SYNC I/O LTC In port.

To output LTC from SYNC I/O:

- Connect the SYNC I/O LTC Out port to your external devices.

Connecting Word Clock Devices

SYNC I/O has Word Clock input and output, and both can be used simultaneously. Use Word Clock when you want SYNC I/O to lock to 1x clock from DAT machines, DA-88s, and similar digital devices.

Pro Tools|HD-series audio interfaces each have their own Word Clock inputs, which provide additional clock options and flexibility. Refer to Pro Tools|HD documentation for details.

To input Word Clock to SYNC I/O:

- Connect Word Clock from the master Word clock signal or device to the SYNC I/O Word Clock In.

To supply Word Clock from SYNC I/O:

- Connect the SYNC I/O Word Clock Out to the Word Clock input of a Word Clock device.

Make sure the SYNC I/O Word Clock Out port is configured for the appropriate choice (1x for Word Clock, or 256x Slave Clock if using the SYNC I/O with Pro Tools|24 MIX).

Word Clock contains no positional information. If you want devices to play or record in sync, you’ll still need to provide them with a positional reference.

SYNC I/O can generate time code to provide positional reference to other devices. See “Generating & Regenerating Time Code” on page 47.

Connecting AES/EBU Devices

To input AES/EBU clock reference to SYNC I/O:

- Connect the device’s AES/EBU output to the SYNC I/O AES/EBU input.

Connecting SYNC I/O to an AES/EBU device
To supply AES/EBU clock reference from SYNC I/O:

- Connect the SYNC I/O AES/EBU output to the AES/EBU input on a DAT machine or other digital device. (AES/EBU clock does not support 176.4 kHz or 192 kHz sample rates.)

Connecting MIDI

The SYNC I/O MTC Out port supplies MIDI time code, derived from conversion (from LTC, VITC and Bi-Phase) or MTC generation, to synchronize MTC-compatible consoles, sequencers, lighting systems, and other devices.

MIDI time code from the MTC Out always matches the time code address displayed on the SYNC I/O front panel. If you need to supply MTC from SYNC I/O to another MTC-compatible device, connect the device as described below.

To connect an MTC-compatible device to receive MTC from SYNC I/O:

- Connect the SYNC I/O MTC Out port to the appropriate MIDI input on the device using a standard MIDI cable.

Pro Tools and MTC

Pro Tools receives MTC from SYNC I/O through its connection to the SYNC I/O Host Serial port. This signal does not include standard MIDI time code, but is instead a high-quality, proprietary time code signal designed for Pro Tools. A MIDI Interface is not required for Pro Tools to receive MTC.

MTC is output constantly whenever SYNC I/O is generating time code. This output can be muted when time code (LTC) is idle. See “MTC Output and Idle Muting” on page 53 for details.

Software Installation

The following sections provide instructions to install software required to use SYNC I/O with Pro Tools|HD or with the stand alone SYNC I/O Setup software (Windows only).

Pro Tools|HD Systems

To install software to use SYNC I/O with Pro Tools|HD:

- Make sure you have already installed Pro Tools software and the related SYNC I/O options. Each release of Pro Tools software includes a SYNC I/O firmware updater and documentation.

SYNC I/O Setup Software Utility

(Windows Only)

When using SYNC I/O in stand-alone mode, the SYNC I/O Setup software utility is required to update firmware and enable remote control of SYNC I/O. Firmware updates are made available by Digidesign to add capabilities to your SYNC I/O. Updates can be downloaded from the Digidesign Web site (www.digidesign.com).

To install SYNC I/O Setup on Windows:

1. Make sure SYNC I/O is connected to a serial or COM port on your computer. See “Serial Connections for SYNC I/O Setup Software Utility” on page 8.
2. Insert the CD-ROM containing the latest SYNC I/O software, or navigate to its location if you downloaded an update.
3. Launch the installer and follow the on-screen instructions.

Chapter 2: Installation and Configuration 13
Configuring Pro Tools|HD and SYNC I/O

Pro Tools provides SYNC I/O configuration and firmware update controls. These establish communication between Pro Tools and SYNC I/O.

This section describes how to configure Pro Tools for the SYNC I/O, how to check your configuration and firmware, and how to set session settings relevant to the SYNC I/O.

Loop Sync

SYNC I/O supports Digidesign’s Loop Sync feature for connecting HD interfaces. SYNC I/O can be configured as the Clock Source (Loop Master), in order to provide Loop Sync master clock to the rest of your Pro Tools|HD hardware.

To check SYNC I/O and Pro Tools communication:

1. After installing Pro Tools and connecting the SYNC I/O as described, launch Pro Tools.
2. Choose Setups > Peripherals, and click the Synchronization tab. The SYNC I/O should be shown as the Device, with DigiSerial Port as the selected port.
3. Click Enable SYNC Setup. Pro Tools scans the DigiSerial port and checks SYNC I/O firmware.

If these are not shown, check all your connections, then try manually selecting SYNC I/O and DigiSerial Port from the Device and Port selectors. Once SYNC I/O is selected in this way, the SYNC Setup controls become available in the lower part of the Peripherals window.

For system requirements and Loop Sync connection instructions, see Chapter 1, “Introduction.”

Auto ID of SYNC I/O through Loop Sync

Pro Tools|HD automatically recognizes if a SYNC I/O is connected to the DigiSerial port when Pro Tools is launched. When SYNC I/O is recognized, Pro Tools automatically configures the Device and Port settings for SYNC I/O in the Peripherals dialog. Pro Tools 6.4 also checks for recent firmware, and alerts you if you need to update the SYNC I/O. Earlier versions of Pro Tools require that you manually check for firmware updates. (See “Updating SYNC I/O Firmware with Pro Tools” on page 19.)
Configuring SYNC I/O in the Pro Tools Session Setup Window

When connected through Loop Sync and enabled in the Peripherals dialog, SYNC I/O settings become available in Sync Setup section of the Pro Tools Session Setup window.

Clock Source

When connected and configured in the Loop Sync chain, SYNC I/O appears along with your HD-series audio interfaces in the Clock Source menu, located in the Session Setup window.

SYNC I/O selected as the current Clock Source in the Session Setup window

Clock Source can be any device in the Loop Sync chain. This lets you utilize any digital input source available on any HD peripheral, including the SYNC I/O, simply by selecting that device and source from the Clock Source menu.

Clock Reference

The selected Clock Source device determines your choices for clock reference.

When Clock Source is SYNC I/O

When the SYNC I/O is the Clock Source, it is the Loop Master. Clock, Positional Reference, and Video Format selectors become active in the SYNC Setup section of the Session Setup window.

SYNC Setup controls in the Session Setup window

SYNC I/O Clock Reference choices include Internal/VSO, Video In, Video Reference, LTC, Bi-Phase, Pilot, AES, and Word Clock. When SYNC I/O is not the selected Clock Source device, the Clock Reference menu in the SYNC Setup section switches to Loop Sync.

To choose a SYNC I/O Clock Reference:

- Select a SYNC I/O clock choice from the Clock Reference menu in the Session Setup window.

For LTC clock reference, multiple choices are available from the LTC sub-menu. See “LTC and Clock Reference” on page 38.
The Clock Source menu follows your selection of SYNC I/O for Clock Reference, and automatically switches to SYNC I/O. (You can also choose the SYNC I/O as Clock Source first, then select a Clock Reference.)

To choose a different Loop Sync device as the Clock Source:

- Choose a different Loop Sync device and Clock Source from the hierarchical Clock Source menu.

Choosing a Clock Source

When Clock Source is an HD I/O

When a 192 I/O, 192 Digital I/O or 96 I/O is providing the Clock Source, it will be the Loop Master. Clock Source options are available directly from the Clock Source menu, based on the configuration of that interface in the Hardware Setup dialog. Choices can include AES, S/PDIF, Optical, or Word Clock.

Locked and Speed Cal LEDs

The Locked and Speed Cal indicators in the SYNC I/O section of the Session Setup window display synchronization status of the SYNC I/O. These indicators reflect the state of the same LEDs on the front panel.

![Locked and Speed Cal LEDs](image)

Locked The Locked indicator stays lit when the SYNC I/O is locked to the selected clock reference. The Locked indicator flashes if the selected clock reference source is missing or out of lockable frequency range.

Speed Cal Speed Cal is an indicator of the accuracy of the incoming clock reference. The Speed Cal indicator flashes when the output sample rate is not at the expected (or target) rate. The Speed Cal indicator stays lit when the output frequency is within 200 ppm (0.02%) of the selected sample rate. If the output frequency is higher than expected, the Speed Cal indicator flashes quickly; if the output frequency is lower, the Speed Cal indicator flashes slowly.

For example, if the session is 30 fps and LTC is the selected clock reference but the LTC is actually 29.97, the SYNC I/O will lock (the Locked LED will stay lit), but the Speed Cal LED will flash slowly.

Positional Reference

To select a positional reference:

1. Choose Window > Show Session Setup.
2. Choose a positional reference from the Positional Reference menu, located in the SYNC Setup controls.
Sample Rate

The SYNC I/O sample rate is determined by the current Pro Tools session sample rate. In Stand-alone mode, SYNC I/O sample rate can be selected with SYNC I/O Setup software utility (Windows only), or using the front panel switches. Current sample rate is indicated by the Sample Rate LEDs.

When used with a Pro Tools|HD system, SYNC I/O supports all available sample rates. Setting the session rate in Playback Engine or Hardware Setup dialogs also sets the SYNC I/O to that sample rate.

When using PostConform with the SYNC I/O, only 44.1 kHz and 48 kHz sessions are supported.

Audio and Video Pull Up and Pull Down

Pro Tools provides 4.167% pull up, and 4.0% pull down choices. When working with a Movie track containing video, a separate Video Pull-Down menu becomes available in the Session Setup window, allowing you to apply standard or non-standard pull factors to audio and video separately. This lets Pro Tools synchronize to most supported SMPTE frame rates and formats.

⚠️ On Pro Tools|HD systems 4.167% pull up and 4.0% pull down are not available in 176.4 kHz and 192 kHz sessions.

Pro Tools|24 Mix systems do not support pull rates greater than 0.1%.

Time Code Rate

While using Pro Tools, SYNC I/O Time Code Rate automatically follows the session Time Code Rate setting. Session Time Code Rate is set in the Session Setup window.

To set the session Time Code Rate:

- Choose a rate from the Time Code Rate selector in the Session Setup window.

Choosing a session Time Code Rate

In Stand-alone mode, SYNC I/O Time Code Rate can be set using the SYNC I/O Setup software utility (Windows only), or from the front panel.

Feet+Frame Rate

While using Pro Tools, SYNC I/O Feet+Frames Rate automatically follows the session Feet+Frame Rate setting. The session Feet+Frames Rate is set in the Session Setup window.

To set the session Feet+Frames Rate:

- Choose a rate from the Feet+Frames Rate selector in the Session Setup window.

Choosing a session Feet+Frames Rate

In Stand-alone mode, SYNC I/O Feet+Frames rate can be set using the SYNC I/O Setup software utility (Windows only), or from the front panel.
PAL/NTSC Video Format

Choose PAL or NTSC format for the session using the Video Format selector in the Session Setup window. If the session already has video, the format will be set automatically.

MachineControl Configuration

If using Digidesign MachineControl, do the following to establish basic communication.

To configure MachineControl:

1. Choose Setup > Peripherals.

2. In the Synchronization window, make sure the SYNC I/O is the current Synchronization device, and DigiSerial is the selected port.

3. Click the MachineControl tab to open the MachineControl window.

4. Enable and configure options for 9-pin Serial or 9-pin Remote. SYNC I/O 9-Pin ports 1 and 2 are available for Serial mode on HD systems only. (Remote mode requires a standard serial or COM connection.)

Selecting Transport Master

The Pro Tools Transport window provides the Transport Master selector. This pop-up lets you select the device that will be controlled by the Pro Tools transport. Choices include Pro Tools and any other devices or modes you have enabled in the Synchronization or MachineControl tabs of the Peripherals dialog.

See the MachineControl Guide for installation instructions and additional information.

Software Configuration for SYNC I/O Setup Software Utility

(Windows Only)

To configure SYNC I/O Setup software on Windows:

1. Make sure SYNC I/O is connected to your computer according to the instructions in “Serial Connections” on page 7.

2. Launch the SYNC I/O Setup software utility.

3. Choose Preferences > SYNC I/O Setup Preferences.

4. If not already selected, choose the appropriate serial port for your SYNC I/O-to-computer connection.

5. Close the Preferences window. The SYNC I/O Setup software utility should now show that it recognizes SYNC I/O in the information display section. If it does not, check your connections and port selection, and try again.

For more information on firmware updates and the SYNC I/O Setup software utility, see “Updating SYNC I/O Firmware” on page 19.
Configuring Pro Tools|24 MIX with SYNC I/O

SYNC I/O can be used with a Pro Tools|24 MIX system as an alternative to the USD. When used with these systems, the SYNC I/O emulates the USD.

To connect a SYNC I/O to your MIX system, see “Hardware Connections” on page 7.

To configure Pro Tools|24 MIX for a SYNC I/O:

1. Start up your system beginning with hard drives, then the SYNC I/O, then MIDI and other studio equipment, then the CPU. Turn on your speakers and monitoring system last.

2. Launch Pro Tools.

3. Choose Setups > Peripherals, and click the Synchronization tab.

4. Select Universal Slave Driver for the Synchronization Device.

5. Select DigiSerial Port for the Port.

6. Once the SYNC I/O is declared as a USD, click OK to close the Peripherals window.

To configure the SYNC I/O for your projects and sessions:

1. In the Session Setup window, select Clock and Positional References from their menus.

2. To generate time code from the SYNC I/O, enable Generate using USD.

3. Configure other settings as needed, selecting USD wherever appropriate.

Updating SYNC I/O Firmware

You can update the firmware on your SYNC I/O from Pro Tools or from the SYNC I/O Setup software utility (Windows only).

⚠️ To acquire the latest firmware, visit the Digidesign Web site.

When Pro Tools is installed, new firmware for the SYNC I/O will automatically be installed in the SYNC I/O folder within the Digidesign folder. If there is no SYNC I/O folder in the Digidesign folder, the firmware will not be installed. To update your unit, launch Pro Tools and follow the instruction in the next section. You can also update firmware using the SYNC I/O Setup software utility.

Updating SYNC I/O Firmware with Pro Tools

Pro Tools 6.4 compares firmware whenever you launch Pro Tools, or whenever SYNC I/O is enabled in the Peripherals > Synchronization dialog (see “Auto ID of SYNC I/O through Loop Sync” on page 14). Earlier versions of Pro Tools require that you check firmware manually.

If Pro Tools determines that the SYNC I/O does not have the most current firmware, an update dialog appears.

- Click Update to update your SYNC I/O. This automatically locates the firmware in the SYNC I/O folder and updates the SYNC I/O through the DigiSerial Port.
Firmware Messages

The following messages may appear during firmware updating:

Firmware Not Found If no compatible firmware is found in the SYNC I/O Folder, a dialog appears instructing you to install SYNC I/O firmware. Use the Pro Tools installer CD, or use the latest version of the SYNC I/O Setup software utility (Windows only).

SYNC I/O Not on DigiSerial Port In order to update SYNC I/O firmware from Pro Tools, SYNC I/O must be connected to the DigiSerial Port. Otherwise, if the SYNC I/O is connected to the computer’s serial port, you can update the firmware using the SYNC I/O Setup software utility (Windows only).

To update SYNC I/O firmware from Pro Tools:

1. Choose Setups > Peripherals and click the Synchronization tab.
2. Make sure you have already configured the Synchronization Device and Port options for SYNC I/O.
3. Click Update SYNC I/O Firmware.
4. Follow the on-screen instructions to complete the update.

Updating SYNC I/O Firmware with SYNC I/O Setup Software Utility

(Windows Only)

If you are using SYNC I/O with Pro Tools|MIX, or if you are not using Pro Tools, use the SYNC I/O Setup software utility to update the firmware. To do this, the SYNC I/O must be connected to a serial or COM port on the computer. You cannot run the SYNC I/O Setup utility from the DigiSerial port on Pro Tools PCI cards.

To update SYNC I/O firmware using SYNC I/O Setup software utility on Windows:

1. Make sure SYNC I/O is connected to the computer as explained in “Serial Connections for SYNC I/O Setup Software Utility” on page 8.
2. Launch the SYNC I/O Setup utility.
3. Right-click the title bar at the top of the SYNC I/O Setup application window and choose SYNC I/O Preferences.
4. Click Update SYNC I/O Firmware.
5. Follow the on-screen instructions to complete the update.

SYNC setup and firmware controls

3. Click Update SYNC I/O Firmware.
4. Follow the on-screen instructions to complete the update.
Troubleshooting

Status LEDs

The status LEDs (LOCKED and SPEED CAL) on the SYNC I/O front panel and in the Session Setup window may help you isolate potential problems.

Use the Incoming Time field in Pro Tools Session Setup Window as a Reference

The Incoming Time field in the Session Setup Window indicates whether or not SYNC I/O is receiving positional reference. If this field appears to be inactive when inputting time code to SYNC I/O, check your hardware device settings, serial connection to your computer, and your software settings.

Lost Communication

If Pro Tools loses communication with SYNC I/O, a dialog will appear asking you whether you want to switch to MTC (if available) or continue trying to locate SYNC I/O. If you see a “lost communication” dialog, check power, DigiSerial, and other connections.

Lost Communication Dialog

The Lost Communication dialog provides the following options for re-establishing synchronization when communication with SYNC I/O stops:

Use MTC Click this button if the SYNC I/O is unavailable, to switch to any currently connected MIDI interface for MTC synchronization. This option requires a compatible device that supports MTC conversion, and that is already connected to your CPU and enabled.

Keep SYNC I/O Click this to leave the session configured for SYNC I/O, or to continue searching for the SYNC I/O to re-establish lost communication.

Synchronization Accuracy

If you are noticing drift or lack of accurate synchronization between your devices, check the following:

◆ If your system locks up in the wrong place, make sure you have set the correct frame rate and format (NTSC or PAL) on all your devices.
◆ If your system locks up in the correct location, but drifts, check your clock signals and settings.
SYNC I/O Hardware and Software

SYNC I/O Front Panel

Controls and Displays

All SYNC I/O local controls are on its front panel. The back panel is reserved for connectors only. This section identifies each front panel switch and display. For information on back panel connectors and setup, see Chapter 2, “Installation and Configuration.”

AC Mains Power Switch

When the SYNC I/O power switch is pressed in, power is *on*; when the switch is out, power is *off*.

The LED ring around the power switch is orange while the SYNC I/O is powering up, or while firmware is being updated. When the SYNC I/O is ready for use, the LED around the power switch ring is green.

Clock Reference Switch and LEDs

This switch selects the SYNC I/O clock reference, as indicated by the Clock Reference LEDs. Available clock reference inputs include Video Ref, Video In, LTC, Digital, Pilot, Bi-phase/Tach, Internal/VSO, and Loop Sync.

Loop Master Indicator

When lit, this LED indicates that the SYNC I/O is the current Pro Tools Loop Master device.
Table 4. Sample Rates at Pull Up and Pull Down Settings

<table>
<thead>
<tr>
<th>Pull Up/Down</th>
<th>Sample Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>44100</td>
</tr>
<tr>
<td>+4.1667% and +0.1%</td>
<td>45983</td>
</tr>
<tr>
<td>+4.1667%</td>
<td>45938</td>
</tr>
<tr>
<td>+4.1667% and –0.1%</td>
<td>45892</td>
</tr>
<tr>
<td>+0.1%</td>
<td>44144</td>
</tr>
<tr>
<td>–0.1%</td>
<td>44056</td>
</tr>
<tr>
<td>-4.0% and +0.1%</td>
<td>42378</td>
</tr>
<tr>
<td>-4.0%</td>
<td>42336</td>
</tr>
<tr>
<td>-4.0% and –0.1%</td>
<td>42294</td>
</tr>
</tbody>
</table>

Sample Rate LEDs

These green or yellow LEDs show the current SYNC I/O sample rate. Pull Up and Pull Down are available for all sample rate settings, indicated by the corresponding LED. Table 4 (above) shows the actual sample rates when pulled up or down.

Generator/Parameter Controls

These four switches provide direct access to many SYNC I/O functions, including time code generator settings, PAL/NTSC selection, sample rate and more. The Time Code LED display shows the current mode, selected parameter, or setting.

Time Code Display

This 7-segment, multifunction LED is the SYNC I/O time code and parameter display.

Time Code The current positional reference (internal or external), is displayed in hours:minutes:seconds:frames. Odd/even field distinction is indicated using a decimal point to the right of the frames display. A lit decimal point to the right of frames indicates an even-numbered field; no decimal point indicates an odd-numbered field. When SYNC I/O is in Auto Switch LTC/VITC mode, the decimal point to the right of “minutes” illuminates.

The SYNC I/O Time Code Display always displays actual incoming time code, regardless of any Session Start Offsets (External Time Code Offsets in Pro Tools 6.6.x) that are applied in Pro Tools.
Parameters and Values When configuring SYNC I/O with the Set, Run/Stop and other parameter controls, the LED display shows parameter names, values, and other data.

For a table identifying each LED abbreviation and function, see “Parameters” on page 57.

Positional Reference Switch

This switch selects the positional reference source, as indicated by the Positional Reference LEDs. Choices include LTC, VITC, Auto Switch Bi-phase, and Generate.

In Auto Switch LTC/VITC mode, both the LTC and VITC LEDs light while SYNC I/O determines which source it will use. Either the LTC or the VITC LED will remain lit to indicate the chosen positional reference.

Frame Rate Switch

This switch selects the time code frame rate and format (drop-frame or non drop-frame). The active choice is displayed by the Frame Rate and DF (drop frame) LEDs.

Frame Rate LEDs and DF Indicator

These display the current SYNC I/O frame rate: 30, 29.97, 25, or 24 fps are indicated by four green LEDs. The DF LED indicates drop-frame (lit) or non drop-frame (unlit). The 24 fps LED will blink to indicate 23.976 fps.

Status LEDs

These LEDs show the current state of SYNC I/O in relation to clock references. Indicators include:

Locked This green LED lights solid when SYNC I/O is locked to the selected clock reference. LOCKED flashes if the selected clock reference source is missing or out of lockable frequency range.

Speed Cal (Speed Calibration) This yellow LED indicates when all output clocks are at a frequency that corresponds with the chosen sample rate. The Speed Cal LED flashes whenever there is a mismatch between the chosen sample rate and the actual output sample rate. Speed Cal compares actual output sample rate to desired sample rate.

The Speed Cal LED does not reflect the speed of motion of the chosen Positional Reference. However, it would bear a relationship to the Positional Reference if both Positional Reference and Clock Reference were set to LTC.

Remote Mode This green LED lights when SYNC I/O is set to Remote-Only/Front Panel Lockout mode. While this LED is lit, the front panel switches will have no effect on the SYNC I/O.

For more information, see “SYNC Setup Window Controls and Displays” on page 28.

Remote-only/Front Panel lockout is not the same as Remote 9-pin Deck Emulation mode.
SYNC I/O Back Panel

Bi-Phase/Tach/GPI/Pilot

This is an accessory port for Bi-Phase, Tach, and Pilot signals (specific cables are required for different applications). This connector is also used for GPI input, output (including Fader Start), and thru signals. This port handles up to 12 volts Bi-phase.

- Refer to Appendix C, “Wiring Diagrams and Pin Assignments” for wiring information and other specifications for this port.

Video Reference In/Out

Video Ref In Receives a signal from an NTSC/PAL video source, such as a black burst (house sync) generator or a standard video signal, for clock reference and window burn purposes. This port is configured as an un-terminated loop-through. When you connect a signal to this port, you must do one of the following:

- Connect a 75-ohm BNC terminator (included with SYNC I/O) to the Video Reference Out on the back panel
 - or -
- Make sure another terminated video device is fed from the Video Reference Out connector.

Video Reference Out A parallel, unbuffered connection output for any video source connected to the Video Reference In port. This port allows black burst or other video reference to be passed to another device, and continues to output whatever signal is present at the Video Reference In port, whether SYNC I/O is on or off.

- If SYNC I/O is the last device in the video sync chain, a 75-ohm BNC terminator must be attached to this connector.

Host Serial Port

The Host Serial port is a bidirectional (in/out) port to connect SYNC I/O to the DigiSerial Port on a Pro Tools Core card. When not being used with Pro Tools, the SYNC I/O Host Serial port can be connected to a standard serial port on a supported computer to run the SYNC I/O Setup software utility (Windows only).
Video In/Out

Video In Receives a signal from an NTSC/PAL video source for clock or VITC positional reference input, or for generating a window burn. This connector is internally terminated at 75 ohms.

Video Out Output of the current Video In signal. If the Positional Reference is set to Generate and the Clock Reference is set to one of the two video inputs, this will output a copy of the video signal appearing at the Video Reference input. In either case, this output might additionally carry VITC and/or Window Burn information if those features are enabled.

MTC Out

The MTC Out will output MIDI Time Code (MTC), only. No other MIDI data appears at this output. MTC output can be regenerated while SYNC I/O is locked to any supported positional reference and clock reference, or internally generated in Generate mode, in which case MTC output follows generator run/stop. This port is intended to supply MTC from SYNC I/O to external sequencers or other MIDI devices.

MTC is output constantly whenever SYNC I/O is generating time code. This output can be muted when time code (LTC) is idle. See “MTC Output and Idle Muting” on page 53 for details.

LTC In/Out

LTC In Receives a Linear Time Code (LTC) source, balanced or unbalanced analog, for clock and positional reference. This port is often used to receive LTC from an audio track on an external deck or the address track of a VTR. Adjustable LTC servo gain is available in Pro Tools and from the front panel.

LTC Out Outputs linear time code, in balanced or unbalanced analog audio format. See Appendix C, “Wiring Diagrams and Pin Assignments” for wiring details. LTC output gain is also adjustable using the SYNC I/O Setup software utility (Windows only) or the controls on the front panel of the SYNC I/O.

AES/EBU In/Out

AES In Receives an AES/EBU digital audio signal, for clock reference purposes only. SYNC I/O utilizes only the signal's clock information, not the audio information. If digital audio information is present at this input, it will be ignored and not passed through to the AES/EBU digital output connector.

AES/EBU Out Outputs a silent (all bits OFF) AES/EBU audio signal whose sample rate exactly matches SYNC I/O Word Clock BNC output.
Word Clock In/Out

Word Clock In Receives (1x sample rate) Word Clock, for clock reference purposes only. Word Clock is often used with external digital consoles and digital tape machines.

Word Clock Out Outputs 1x sample rate Word Clock information, or 256x Slave Clock, to provide clock to Legacy peripherals and Word clock-capable devices. This port is configured using the SYNC I/O Setup software utility on Windows (Word Clock Out), or the controls on the front panel of the SYNC I/O.

9-Pin Out 1 and 2

For Digidesign MachineControl-enabled systems, these two ports connect directly to external 9-pin transport devices.

For best performance on Windows systems, use the COM ports on the Windows computer.

For best performance on Macintosh systems, use a Keyspan USA28x USB serial adapter.

See the MachineControl Guide for more information.

Loop Sync In/Out

Loop Sync is the clock signal used to synchronize Pro Tools|HD-series audio interfaces.

Loop Sync In Receives Loop Sync from any HD-series audio interface.

Loop Sync Out Provides Loop Sync. This port connects to the primary HD-series audio interface.

AC Power In

SYNC I/O accepts a standard power cable and is auto power-selecting (100V to 240V).

SYNC I/O Setup Software Utility

(Windows Only)

This section reviews the SYNC Setup controls and displays included with the SYNC I/O Setup software utility.

For SYNC I/O Setup software utility requirements, see “Software Installation” on page 13.

SYNC Setup Window Controls and Displays

SYNC Setup window (SYNC I/O Setup software utility)

SYNC I/O Setup Software Utility Help

- Right-click anywhere in the SYNC Setup window and select Help, or press the F1 key.
Time Code Window

The time code display mirrors the LED Time Code Display on the SYNC I/O front panel, displaying (in hours:minutes:seconds:frames) the time code address of the current positional reference.

When SYNC I/O is reading odd-numbered fields, the separator changes from a normal colon (:) to a period (.) since when it’s reading even-numbered fields, the punctuation returns to a colon (:). Odd/even status is only available while reading VITC, and only when VITC is within a speed range from zero to about 50% of playback speed.

Clock Reference

This control selects SYNC I/O clock reference.

Sample Rate

This control selects SYNC I/O sample rate (or the Pro Tools session sample rate, if applicable).

Pull Rate

This control enables Pull Up or Pull Down for the current sample rate.

Word Clock Out

This control configures the SYNC I/O Word Clock Output between 256x (Super Clock) and the current session rate (1x at 44.1 kHz, or 1x at 48 kHz). Only Legacy audio interfaces require 256x Super Clock.

Positional Reference

This control selects SYNC I/O positional reference.

Frame Rate

This control selects the frames-per-second (fps) rate of external (or internally generated) time code.

Status Display

This display shows the current state of SYNC I/O Setup software utility in relation to SYNC I/O and external devices, as follows:

- **Resolver Locked** Lights when SYNC I/O is locked to the chosen external clock reference, or to its **Internal** clock reference.

- **Speed Calibration** Lights when SYNC I/O system clock and all output clocks are at a frequency that corresponds with the chosen sample rate. Capable of indicating mismatch of pull-up, pull-down and frame rate.

- **For details about Speed Calibration characteristics, see “Status LEDs” on page 25.**

- **Regenerator Locked** Lights when SYNC I/O is regenerating time code at its video, LTC, and MTC outputs locked with the incoming positional reference source. Also lit whenever SYNC I/O is generating time code internally.

- **Connected to SYNC I/O** Lights when the SYNC Setup window is the front-most window and is communicating with SYNC I/O.

- **Waiting for SYNC I/O** Lights when the SYNC Setup window is the front-most window and is unable to communicate with SYNC I/O.

- **Port Relinquished** Lights when the SYNC Setup window is not the front-most window or is unable to allocate a serial port with which to communicate with SYNC I/O.
LTC Output Level

This control adjusts the analog audio level of the SYNC I/O LTC output, from –24 dBu to +9 dBu.

Freewheel Duration

This control sets the period of time for which SYNC I/O will continue to supply positional reference data after an external source is interrupted or stopped (also referred to as Time Code Freewheel in Pro Tools).

Video Format

This control selects the format (NTSC or PAL) for both the incoming and outgoing video signals.

- NTSC is used in North and South America, Japan, and certain other parts of the world.
- PAL is used in most of Europe, Asia, and Africa. Users of SECAM video (for France, Russia, and certain other parts of the world) should select PAL.

VITC Read Lines

This control determines which line pair of incoming video signal is used for the VITC source. When set to Auto, SYNC I/O will search for the first valid line pair automatically. Alternatively, this value can be set to specific VITC line pairs.

VITC Insertion Enabled

When selected, VITC will be inserted into the outgoing video signal—assuming that a video signal is present at a SYNC I/O video input, and that SYNC I/O is in a valid mode for inserting VITC. The only invalid positional reference modes are VITC or Auto Switch LTC/VITC. SYNC I/O can’t read VITC and generate new VITC at the same time.

Pitch Memory Enabled

When selected, SYNC I/O will remain at a pitch (sample rate) that corresponds to the last known incoming time code speed. When deselected, SYNC I/O will revert to the selected sample rate. If Pitch Memory is disabled and the selected external clock reference is not available, then SYNC I/O will revert to the nominal, selected internal sample rate setting.

Idle MTC Enabled

Controls MTC Output during idle (play stopped). When enabled, MTC is continuously output. When not enabled, MTC output is muted when playback is idle. See “MTC Output and Idle Muting” on page 53 for details.

Dub Window

Settings for SYNC I/O character generator/window dubbing features. (These controls are also available from within the Pro Tools Peripherals dialog.) Complete Window Dub instructions are provided in the section “Generating a Window Burn” on page 53.
Bi-Phase/Tach Parameters

Used for specialized applications that involve film or other equipment that output Bi-Phase/Tach information. These parameters must be set to match the Bi-Phase or Tach source to achieve lock.

Generator/Bi-Phase Preset

Serves two functions, as determined by the current SYNC I/O mode:

Generate Mode Sets the time code start time directly by clicking in the Hrs:Min:Sec:Frm fields and typing in a value. The Tab key will cycle though the fields.

Bi-Phase/Tach Mode Zeros the time code counter, to allow SYNC I/O to generate time code in relation to the pulses of the incoming Bi-Phase/Tach information. Establishes a time code start point (first frame of a reel, for example).

Variable Speed Override (VSO)

Used to varispeed the rate of SYNC I/O internal crystal-referenced clock (±699 cents; a cent is one-hundredth of a semitone). VSO is available at any positional reference setting, but only when the clock reference is Internal/VSO.
SYNC I/O settings can be controlled in three ways:

From Pro Tools Provides access to most SYNClO controls from within Pro Tools and from the SYNClO front panel.

From the SYNClO Front Panel Provides access to most controls from the when using the SYNClO in stand-alone mode.

From the SYNClO Setup Software Utility (Windows Only) This optional utility provides remote access to all SYNClO controls from a supported Windows computer.

For a listing of SYNClO parameters supported in each method, see “SYNClO Controls in Pro Tools, SYNClO Setup Software Utility, and the SYNClO Front Panel” on page 34.

About SYNClO Setup Software Utility Remote-Only Mode

When the default Remote-Only Mode (Front Panel Lockout) is enabled in the SYNClO Setup Preferences window, none of the SYNClO front panel switches are operational, and the Remote Only LED is lit.

To exit Remote-Only mode from the front panel:

- Simultaneously press and hold down the Clock Reference, Positional Reference, and Frame Rate front panel switches.

This will disengage SYNClO from Remote-Only mode. This is useful when the host computer is not easily accessible.
Table 5. SYNC I/O controls in Pro Tools, SYNC I/O Setup software utility, and the SYNC I/O front panel

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Available from/in:</th>
<th>Pro Tools</th>
<th>Front Panel</th>
<th>SYNC I/O Setup Software Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware Update</td>
<td>yes (Peripherals/Sync)</td>
<td>no</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Clock References</td>
<td>all (Session Setup)</td>
<td>all</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>Positional References</td>
<td>all (Session Setup)</td>
<td>all</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>Sample Rates</td>
<td>all</td>
<td>all</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>Pull Rates</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Base Clock (Word Clock Out)</td>
<td>no</td>
<td>yes (“Base Clock”)</td>
<td>yes (“Word Clock Out”)</td>
<td></td>
</tr>
<tr>
<td>Frame Rates</td>
<td>all (Session Setup)</td>
<td>all</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>LTC Output level</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>LTC Servo gain</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Freewheel duration</td>
<td>yes (Session Setup)</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Video Format (NTSC/PAL)</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>VITC Read Lines</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>VITC Generate Lines</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>VITC Insertion Enable</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Pitch Memory</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Window Dub</td>
<td>all (Peripherals/Sync)</td>
<td>on/off only</td>
<td>yes, all</td>
<td></td>
</tr>
<tr>
<td>Bi-Phase/Tach</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Gen/Bi-Phase Preset</td>
<td>Generator, no Bi-Phase</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>GPI</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>VSO</td>
<td>yes (Session Setup)</td>
<td>no</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Idle MTC Enabled</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>USD Emulation mode</td>
<td>no</td>
<td>yes</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>
Front Panel
Generator/Parameter Switches

The Generator/Parameter Controls are labelled SET, DOWN, UP, and RUN/STOP/CLEAR/ESC. In addition to their primary generator functions, these switches provide front panel access to most SYNC I/O parameters.

Features Not Accessible from the SYNC I/O Front Panel Controls

The front panel provides access to all SYNC I/O features except the following, which can be controlled using Pro Tools or the SYNC I/O Setup software utility (Windows only):

- Remote-Only Mode/Front Panel Lockout
- Firmware update
- Changing Window Burn Size, Vertical Position, Horizontal Position, and Color
- GPI (General Purpose Interface) functions
- Variable Speed Offset (VSO)

For a listing of available parameters, see Table 5 on page 34.

<table>
<thead>
<tr>
<th>SET</th>
<th>DOWN</th>
<th>UP</th>
<th>RUN/STOP</th>
<th>CLEAR</th>
</tr>
</thead>
</table>

Generator/Parameter Switches

Set

The SET switch has three primary functions:

When time code is displayed Press Set once to change the Display from time code to parameter names.

When a parameter name is visible Press Set once to change the Display to show parameter values.

When a parameter value is visible Press Set once to set the value for that parameter and return the Display to time code.

Down and Up

These switches scroll through parameter names or values:

When a parameter name is visible Press the Down and Up switches to scroll through the parameter names (for example, from “SET GEn” to “VIdEo SY”).

When a parameter value is visible Press the Down and Up switches to scroll through the range of values for the current parameter.

When entering time code values Press the Down and Up switches simultaneously to cycle through the hours:minutes:seconds:frames fields in the time code display.

Run/Stop/Clear/Esc

This switch has two functions, depending on the current mode:

While generating time code Press RUN/STOP/CLEAR/ESC to start or stop the time code generator when SYNC I/O is in Generator Preset mode.

While time code is being displayed Press RUN/STOP/CLEAR/ESC to reset the counter whenever time code is visible in the LED Time Code display.

Otherwise, the RUN/STOP/CLEAR/ESC switch serves as a Cancel button.
Edit Mode

To enter Parameter/Value Edit mode:
- Press Set (when time code numbers are visible in the LED Time Code Display). The first press displays the first parameter name, “Set Gen,” (for the time code generator).

A different parameter may be displayed, depending on the previous SYNC I/O settings.

To scroll through parameter choices:
- Press Up or Down to scroll through available parameters. Holding the switch scrolls through the parameters.

To select a parameter to edit:
- When the desired parameter is displayed, press Set. This will access that parameter’s current setting.

To edit parameter values:
- With parameter values displayed, press Up or Down to cycle through the available values.

Example: Adjusting LTC Gain

In the following example, the steps cover using the SYNC I/O front panel controls to change the Linear Time Code output level.

(With just a few exceptions, these steps are the same for all SYNC I/O parameters.)

To adjust LTC gain:

1. Press Set until the LED Time Code Display shows a parameter name. The first name is Set Generator (SE7 6En), although you may see a different name, depending on the previous SYNC I/O settings.
2. Press the Up or Down switches until the LED Time Code Display shows LTC Gain (L7C 6AIn).
3. Press Set. The LED Time Code Display shows the current value for LTC Gain (in dBu).
4. Press the Up or Down switches to scroll through the available values (in 3 dBu steps). Hold down either switch to scroll quickly.
5. Press Set.

Clock References and Options

The following sections explain each clock reference choice in detail. For basic instructions on selecting the clock or positional reference, setting frame rate, or setting SYNC I/O sample rate, see Chapter 2, “Installation and Configuration.”

Video Clock Options

SYNC I/O provides two video inputs, Video Ref In and Video In, which are each selectable for clock reference. (See “Video and Clock Reference” on page 37).

For House Video Reference (Black Burst) Use the SYNC I/O Video Ref Input.

For Incoming Video Use the Video In connector.
Serial Time Code with MachineControl

MachineControl-equipped Pro Tools systems can utilize serial time code through either of the SYNC I/O 9-pin ports. When using MachineControl with serial time code as the positional reference, SYNC I/O must be locked to a Video Reference. In this scenario, SYNC I/O is set to Generate mode to indicate that positional information is acquired by Pro Tools directly over the 9-pin cable, not through SYNC I/O. Refer to the MachineControl Guide for complete serial time code information.

Video and Clock Reference

If you have only a single video source, and since SYNC I/O uses different video inputs depending on configuration, you may want to follow the wiring tip below to ensure that you have full functionality in all configurations:

To work with a single video source:

1. Connect the video signal to Video Ref In.
2. Run a short BNC jumper cable from the Video Ref Out connector to the Video In connector.
3. Connect the Video Out signal to the video input of your “destination” VTR or video editing system.

The choice of video connector also matters when choosing a positional reference. For instance, when SYNC I/O is in Generate mode and Video is the current clock reference, the time code reference for the generator is always from the Video Ref In connector. However, if you select a positional reference other than Generate, then the signal at the Video In connector is used.

For more video signal information, refer to “Video and VITC Signals” on page 67 in Appendix A.

Digital Clock

To resolve SYNC I/O to external AES/EBU, Word Clock, or Slave Clock:

From Pro Tools:

- In the SYNC Setup section of the Session Setup window, select the appropriate digital clock reference from the Clock Reference pop-up menu.

From the front panel:

1. Press the Clock Reference switch to select DIGITAL.
2. Press Set, and use the Up or Down switches to display Digital Reference (dlI6 rEF).
3. Press Set again. The LED Time Code Display displays the current digital reference, which will be:
 • AES/EBU (AES-E8U)
 - or -
 • Word Clock (I CLOC)
4. Press Up or Down to select the digital clock you want to use.
5. Press Set.
From SYNC I/O Setup software utility (Windows only):

- Select the appropriate Digital clock reference option from the Clock Ref pop-up menu.

If the chosen clock reference source is unavailable, or the current configuration is not valid, the Locked LED on the right side of the SYNC I/O front panel flashes.

Additional Digital Clock Information

AES/EBU The SYNC I/O AES In connector only recognizes and uses the clock portion of an incoming AES/EBU audio signal. All audio information will be ignored and will not be passed to the SYNC I/O AES Out connector.

Word Clock Word Clock is a digital clock reference signal that runs at 1x sample rate (44.1, 48, 88.2, 96, 176.4, or 192 kHz). Pro Tools|HD-series audio interfaces have dedicated BNC-style Word Clock connectors. A wide variety of professional audio devices have Word Clock connectors, including digital mixing consoles, DASH-standard digital multitrack tape recorders and MDMs (modular digital multitrack recorders).

Slave Clock (256x)

Slave Clock (or Super Clock) is a Digidesign proprietary clock format used by legacy Digidesign audio interfaces (888|24, 882|20, 1622, and ADAT Bridge) that run at 256x the sample rate.

When using legacy interfaces with SYNC I/O and Pro Tools|HD, your master HD audio interface (192 I/O, 192 Digital I/O, 96 I/O, or 96i I/O) should supply Slave Clock to the first legacy device through its External Clock Out connector, configured for 256x Slave Clock (see “Base Clock” on page 58 for more information).

Pro Tools|HD-series audio interfaces are always connected using Loop Sync (see “Clock for Pro Tools Audio Interfaces” on page 8 for more information).

For additional digital clock signal information, see “Digital Clock Signal Types” on page 69.

LTC and Clock Reference

LTC can provide both positional and clock information from the same time code signal. LTC cannot be read when the reference deck is stopped or playing back at slow speeds, or at fast wind speeds (roughly 10x playback speed). Pro Tools will not lock until the LTC signal is present.

While resolving to LTC clock, the SYNC I/O provides five options to optimize your system for different types of tasks. This lets you choose between faster response (for when fast lock-up time is critical), or highest sound quality (during critical laybacks, for example).

The Session Setup window provides a sub-menu for LTC Clock Reference choices. The five choices provide different servo gain settings to reduce the effects of jitter when locking to linear time code. In Stand-alone mode, these settings are also available from the front panel.
To resolve SYNC I/O to Linear Time Code from Pro Tools:

- In the Sync Setup section of the Session Setup window, choose an LTC setting from the hierarchical Clock Reference pop-up menu. Choices include:

LTC 0 (fastest) Allows the quickest resolving to incoming LTC, but with greater jitter. This is the default setting, and should be used when fast lock ups are critical.

LTC 1 Provides an intermediate fast setting.

LTC 2 (average) Offers a compromise of lock up time and jitter quality.

LTC 3 Provides an intermediate slow setting.

LTC 4 (smootheest) Offers the lowest jitter from LTC resolve, but can take six to ten seconds to achieve full resolve. This setting is most appropriate when loading critical audio from an analog master, where reducing or eliminating jitter is more important than lock speed. Be sure to allow adequate pre-roll before punching in.

To resolve SYNC I/O to Linear Time Code from the front panel:

- Press the Clock Reference switch to select LTC.

To resolve SYNC I/O to Linear Time Code using SYNC I/O Setup software utility (Windows only):

- Select Linear Time Code (LTC) from the SYNC I/O Setup Clock Ref pop-up menu.

SYNC I/O provides adjustable LTC servo gain. See “Servo Gain” on page 60.

Additional LTC Information

LTC can provide positional and clock reference. LTC can be recorded onto and played back from an analog track, or a VTR audio, address or cue track.

> For further information on LTC signals, see “LTC Signals” on page 68.

Pilot Tone

SYNC I/O can resolve to an external Pilot Tone signal for clock reference, for synchronizing to (or transferring audio from) certain types of open-reel audio tape recorders. Pilot Tone is basically a 60 Hz (NTSC) or 50 Hz (PAL) sine wave tone. Pilot Tone is used on location film shoots to establish a common sync reference between a film or video camera with a portable 1/4-inch analog ATR. Pilot Tone contains no positional information; it provides only clock reference.

SYNC I/O decides whether to use 60 Hz or 50 Hz as the pilot tone reference frequency according to the setting of the Video Format. When set to PAL, the pilot tone frequency is assumed to be 50 Hz. When set to NTSC, 60 Hz is assumed.

Connect the Pilot Tone reference source to the SYNC I/O Bi-Phase/Tach/GPI/Pilot port.

To resolve SYNC I/O to Pilot Tone:

From Pro Tools:

- In the SYNC Setup section of the Session Setup window, select Pilot Tone from the Clock Reference pop-up menu.

From the front panel:

- Press the Clock Reference switch to select PILOT.
From SYNC I/O Setup software utility (Windows only):

- Select Pilot Tone from the SYNC I/O Setup Clock Ref pop-up menu.

For additional Pilot Tone information, see “Pilot Tone” on page 71 in Appendix A.

Bi-Phase/Tach and Clock Reference

SYNC I/O is able to resolve to Bi-Phase/Tach information for use as a clock reference. Bi-Phase/Tach can synchronize positional reference, but you must provide a reference start address (see “Bi-Phase Position Trimming” on page 46 for other requirements). Pro Tools will not lock until the Bi-Phase signal is present.

To configure Bi-Phase/Tach settings, you need to use the SYNC I/O Setup software utility (Windows only) or SYNC I/O front panel controls.

From the front panel:

1. Press the Clock Reference switch to select BI-PHASE/TACH.

2. Select the appropriate Pulse Per Frame and Input Signals parameters, as described in “Bi-Phase/Tach Starting Frame” on page 45 and “Bi-Phase/Tach Signal” on page 46.

If the Bi-Phase/Tach reference clock source is not valid for any reason (such as a poor connection or other signal transmission problem), the Locked LED on the far-right of the SYNC I/O front panel will flash. SYNC I/O accepts up to 12 volts at the Bi-Phase input.

To select Bi-Phase/Tach as the positional reference from Pro Tools:

- In the SYNC Setup section of the Pro Tools Session Setup window, select Bi-Phase from the Positional Reference pop-up menu.

For additional Bi-Phase/Tach signal information, see “Bi-Phase/Tach” on page 70 in Appendix A.

Internal Clock: Generating and Regenerating

SYNC I/O can use its own crystal-referenced internal clock as a master clock source. When SYNC I/O Clock Reference is set to Internal:

- Word Clock and AES/EBU digital clock outputs are simultaneously driven from the internal crystal reference.
 - and –
- If the Positional Reference is set to Generate, generated LTC, MTC, VITC count, and Window Dub outputs are resolved to the same internal crystal reference.
To resolve SYNC I/O to its internal clock:

From Pro Tools:
- In the SYNC Setup section of the Pro Tools Session Setup window, select Internal/VSO from the Clock Reference pop-up menu.

From the front panel:
- Press the Clock Reference switch to select INTERNAL/VSO.

From SYNC I/O Setup software utility (Windows only):
- Select Internal/VSO from the SYNC I/O Setup Clock Ref pop-up menu.

Variable Speed Override (VSO)

To fine-tune the speed (and pitch) of Pro Tools or any device receiving its clock reference from SYNC I/O, you can varispeed the rate of the SYNC I/O crystal-referenced internal clock.

VSO is available at any positional reference setting. VSO is not available from the SYNC I/O front panel controls, but can be controlled directly from Pro Tools or with SYNC I/O Setup software utility (Windows only).

To varispeed the SYNC I/O internal clock from Pro Tools:

1. In the Sync Setup section of the Session Setup window, make sure the Clock Reference is set to Internal/VSO.
2. Select the VSO option.
3. Adjust the varispeed value using the on screen slider.

Variable Speed Override controls (Pro Tools)

To varispeed the SYNC I/O internal clock from SYNC I/O Setup (Windows only):

1. In the SYNC I/O Setup Variable Speed Override section, select VSO Enabled.
2. Use the sliders to adjust the varispeed values in semitone or cent increments. The actual output word-clock frequency is shown near the sliders.
 - or –

Enter the value in semitones and cents using the editable fields. Varispeed range changes with sample rate, as shown in the following table.

Effective VSO rates

<table>
<thead>
<tr>
<th>Sample Rate (kHz)</th>
<th>Rate Type</th>
<th>Min. (Hz)</th>
<th>Max (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.1</td>
<td>1x</td>
<td>40000</td>
<td>50500</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.2</td>
<td>2x</td>
<td>80000</td>
<td>101000</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176.4</td>
<td>4x</td>
<td>160000</td>
<td>202000</td>
</tr>
<tr>
<td>192</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SYNC I/O will only output rates within the limits of the current sample rate. If a varispeed value results in an output frequency (sample rate) that is below or above the limits for the current sample rate, the frequency display turns red.

3 Click Set.

Using Pitch Memory

Pitch Memory holds the output sample rate steady even when the Clock Reference is unavailable or has gone out of lock range.

- When Pitch Memory is not enabled, the output sample rate would return to the nominal sample rate setting (for example, exactly 44.1 kHz) when the Clock Reference disappears or goes out of lock range.
- When Pitch Memory is enabled, Pro Tools continues to play and record at the resolved sample rate even if the Clock Reference source disappears.

To configure Pitch Memory:

From the front panel:

1. Press Set, and use the Up or Down switches to display Pitch Hold (PICH HLd).

2. Press Set. The LED Time Code Display shows On or Off.

3. Press Up and Down to toggle between On and Off.

4. Press Set.

From SYNC I/O Setup software utility (Windows only):

- Click Pitch Memory Enabled.

SYNC I/O retains the Pitch Memory setting, even when the unit is powered off and on again, until you change it.

Positional Reference and Options

The following sections provide additional information for each available Positional Reference format.

Linear Time Code (LTC)

LTC is often striped onto an ATR or VTR audio track. Professional VTRs typically have an address or cue track, intended for LTC. If you are working with a standard audio tape, you’ll almost certainly be working with LTC. If you’re working with a videotape, you may be able to work with either LTC or VITC, or both.

LTC can also be generated as an interpolation of Absolute code. This is how time code DAT machines, DA-88, and many digital VTRs work. In any case, LTC is delivered to SYNC I/O as a series of audio pulses, regardless of how it is stored or generated.

LTC can function simultaneously as a positional reference and a clock reference.

To use LTC as SYNC I/O’s positional reference:

From Pro Tools:

- In the SYNC Setup section of the Session Setup window, choose LTC from the Positional Reference pop-up menu.

From the front panel:

- Press the Positional Reference switch to select LTC.

From SYNC I/O Setup software utility (Windows only):

- Select Linear Time Code (LTC) from the SYNC I/O Setup Positional Ref pop-up menu.
Make sure you select the appropriate clock reference, sample rate, frame rate, and freewheel duration. Also make sure the LTC signal is routed properly to the SYNC I/O LTC In connector.

Freewheel Duration

Freewheel duration (time code freewheel) configures SYNC I/O for a maximum number of frames it should continue generating if time code drops out or is otherwise interrupted. Freewheel settings are ignored when SYNC I/O is in Internal/Generate mode.

Example of Time Code Freewheel

In a 30 fps Pro Tools session, if Freewheel Duration/Time Code Freewheel is 28 frames, SYNC I/O will continue to generate until either the incoming time code signal is restored, or until 28 frames elapse, whichever occurs first.

To set freewheel duration:

From Pro Tools:

- In the Time Code Settings section of the Session Setup window, enter a number of frames for time code Freewheel.

From the front panel:

1. Press Set, and use the Up or Down switches to display Freewheel Length (FrEE LEn).
2. Press Set to display freewheel duration choices.
3. Use the Up or Down switches to scroll through available choices (lowest is “4 Fr” or four frames, highest is “40 Fr” or 40 frames).
4. Press Set.

From SYNC I/O Setup software utility (Windows only):

- Choose a value from the Freewheel Duration menu.

VITC and Positional Reference

VITC is a commonly used positional reference in professional audio post-production. Since VITC is time code information that is embedded as part of the video signal, VITC can be read when the VTR is paused or crawling slowly. When working with Pro Tools, this means that VITC can be used for Auto-Spotting regions to particular video frames.

VITC is less prone to tape drop outs, and in this sense, is inherently more reliable than LTC. VITC can be embedded into any video signal, including digital video signals (tape or nonlinear), without requiring an extra audio track to carry time code.

Tape Protection Mode and VITC

In order for VITC to be read when a videotape is paused, the picture must remain visible. However, to reduce wear on the video heads, after a few minutes of still/pause mode, many VTRs will automatically drop into stop mode—which means the tape will be disengaged from the heads, and VITC can no longer be read off the tape. To continue reading VITC, you may need to reengage still/pause, or press play and re-shuttle the tape to the desired frame.

Clock Considerations for VITC

To avoid tape protection mode problems and ensure constant clock referencing, use the Video Ref In as your clock reference instead of Video In, whenever possible. When using Video Ref In (and house sync), if the video picture disappears SYNC I/O will remain resolved to the black burst signal at the Video Ref In connector.
To use VITC as SYNC I/O positional reference:

From Pro Tools:
- In the SYNC Setup section of the Session Setup window, select VITC from the Positional Reference pop-up menu.

From the front panel:
- Press the Positional Reference switch to select VITC.

From SYNC I/O Setup software utility (Windows only):
- Select Vertical Interval Time Code (VITC) from the SYNC I/O Setup Positional Ref pop-up menu.

Additional VITC-Related Settings

SYNC I/O Settings Make sure to set the appropriate clock reference, sample rate, frame rate, and freewheel duration.

Connections and Sources Make sure that your VITC-striped video signal, if any, is routed to SYNC I/O Video In connector (not the Video Ref In connector). If you use a black burst signal as clock reference connect it to the Video Ref In connector.

You should consider using Video Ref as your Clock Reference (rather than Video In) when working with VITC because a black-burst signal at the Video Ref input will always be there, unlike the video signal at Video In, which may disappear if the videotape disengages.

Auto Switch LTC/VITC Positional Reference

In Auto Switch mode, SYNC I/O switches automatically between LTC and VITC depending upon which is delivering the best time code signal. This is indicated on the front panel by the LTC and VITC positional reference LEDs (both will be lit), and by a decimal point between the minutes and seconds on the front panel time code display.

VITC cannot be read at high speeds (shuttle speeds, for example) while LTC can, and LTC cannot be read at slow speeds (while VITC can be read at slow speeds, and when parked). Auto Switch LTC/VITC provides the best of both LTC and VITC reading without having to manually switch settings.

Auto Switch LTC/VITC Requirements
- Make sure the LTC signal is routed properly to the SYNC I/O LTC In connector;
- Make sure the VITC-striped video signal is routed properly to the SYNC I/O Video In connector (not the Video Ref In connector);
- Make sure to have or stripe matching code on both your LTC and VITC tracks (and your on-screen video window burn, if any).
- Make sure to select Auto or the correct line pair for VITC Read.
- Make sure to select the appropriate clock reference, sample rate, frame rate, and freewheel duration options.

To select Auto Switch LTC/VITC for positional reference:

From Pro Tools:
- In the SYNC Setup section of the Session Setup window, select Auto Switch (LTC/VITC) from the Positional Reference pop-up menu.

From the front panel:
- Press the Positional Reference switch to select Auto Switch LTC/VITC (indicated when both the LTC and VITC LEDs are simultaneously lit).
From SYNC I/O Setup software utility (Windows only):

- Select Auto Switch LTC/VITC from the SYNC I/O Setup Positional Ref pop-up menu.

For additional information and examples of Auto Switch LTC/VITC, see “Auto-Switch LTC/VITC” on page 68 in Appendix A.

Serial Time Code

SYNC I/O provides two 9-pin ports, to be used with MachineControl-enabled systems to remotely control, or follow, external 9-pin transports through the use of serial time code.

For MachineControl-equipped Pro Tools systems, serial time code from either 9-pin port can be used for positional reference. This option is configured from the Peripherals dialog. For details on using serial time code with SYNC I/O, see the MachineControl Guide.

Bi-Phase/Tach Positional Reference

Bi-Phase/Tach signals are clock reference signals, and do not contain positional information of their own. However, they do contain enough information for SYNC I/O to calculate positional information.

To calculate positional reference from Bi-Phase/Tach requires that SYNC I/O be given a starting frame address, and a specific pulses-per-frame value. Each of these related settings are explained in the following sections.

To use Bi-Phase/Tach for positional reference:

First, do one of the following:

From Pro Tools:

- In the SYNC Setup section of the Session Setup window, select Bi-Phase from the Positional Reference pop-up menu.

From the front panel:

- Press the Positional Reference switch to select BI-PHASE.

From SYNC I/O Setup software utility (Windows only):

- Select Bi-Phase/Tach from the SYNC I/O Setup Positional Ref pop-up menu.

Continue by setting the starting frame as described in “Bi-Phase/Tach Starting Frame” on page 45, and setting other Input Signals options, as appropriate.

Bi-Phase/Tach Starting Frame

In order to use the Bi-Phase/Tach signal as a positional reference, SYNC I/O also needs to know the time code address for a particular frame of film. This positional relationship is established by parking the film device at a particular frame and setting SYNC I/O to the equivalent time code value using the Bi-Phase/Tach Starting Frame parameter.

- **Bi-Phase start frame cannot be set from within Pro Tools. Use the Sync I/O Setup software utility or the SYNC I/O front panel controls.**

To set the Bi-Phase/Tach start frame from the front panel:

1. Press Set, and use the Up or Down switches to display Set Gen (SE7 6En).

2. Press Set to display time code numbers. One of the time code fields (hours:minutes:seconds:frames) flashes.

3. Press the Up or Down switch to scroll through the parameter values.

4. To set a time code setting and advance to the next field, press and release the Down and Up switches simultaneously.
5 Repeat until you have finished setting SYNC I/O to the desired generator start time.

6 Press Set.

The LED Time Code Display stops flashing, and displays the start time.

To set the Bi-Phase/Tach start frame using SYNC I/O Setup software utility (Windows only):

1 In the Generator/Bi-Phase Preset section, type in the time code value of the starting frame, in hours:minutes:seconds:frames.

2 Click Set.

Bi-Phase/Tach Signal

To define the direction for a Bi-Phase/Tach input signal using the front panel controls:

1 Press Set, and use the Up or Down switches to display Bi-Phase/Tach Input Signal (bIPH 516).

2 Press Set. The LED Time Code Display shows one of the four parameter values:

 A LEAd b Bi-Phase: FWD = A leads B: when the A square wave is ahead of the B square wave, the direction of the Bi-Phase signal is understood to be “Forward.”

 b LEAd A Bi-Phase: FWD = B leads A: when the B square wave is ahead of the A square wave, the direction of the Bi-Phase signal is understood to be “Forward.”

 r–n–d LO Tach: FWD = B is Low: when the B signal is in a “low” state, the rate and direction (“r–n–d”) of the Tach signal is understood to be “Forward.”

 r–n–d HI Tach: FWD = B is High: When the B signal is in a “high” state, the rate and direction (“r–n–d”) of the Tach signal is understood to be “Forward.”

3 Use the Down and Up switches to scroll between the parameter values.

4 Press Set.

Bi-Phase/Tach Pulses-per-frame (PPF)

There are several different standards for the number of pulses-per-frame output by Bi-Phase or Tach devices. Using the SYNC I/O Setup software utility’s Pulse Per Frame setting (Windows only), you can set SYNC I/O to operate from 2 to 254 pulses per frame. The setting should match the PPF rate of the external device’s Bi-Phase/Tach encoder.

To set the pulses per frame value for a Bi-Phase/Tach signal using the front panel:

1 Press Set, and use the Up or Down switches to display Bi-Phase/Tach Pulses Per Frame (bIPH PPF):

2 Press Set. The LED Time Code Display will switch to display the current PPF value.

3 Use the Down and Up switches to scroll through the parameter values (from 2 to 255 pulses per frame). Holding either switch will scroll at a faster speed.

4 Press Set.

Bi-Phase Position Trimming

While using bi-phase as your positional reference, you can trim the Bi-Phase-to-time code translation at any time. Each press of the Up switch will advance the time address one frame. Each press of the Down switch will retard the time address by one frame. Remember how many presses you’ve accumulated so that you can go back and trim the starting address you previously programmed.
Compensating for Time Code Offsets

You can offset the display of incoming time code in the Pro Tools application. This is useful when you want to adjust the display of time code to match the start time of the session (such as with source material that starts at a different time), or compensate for source material that is consistently offset by a fixed number of frames (such as with some color-corrected video masters).

Pro Tools provides three different types of Session Start Offsets settings (External Time Code Offsets in Pro Tools 6.6.x). These offsets include:
- MMC (MIDI Machine Control)
- 9-Pin (Serial machine control)
- Synchronization peripherals such as the SYNC I/O, USD, or other peripherals (such as MIDI interfaces that provide MIDI Time Code).

Unique values can be defined for each of these three types offsets, or you can link all three to adjust in unison.

Positive and negative offset values can be entered to offset Pro Tools time code display later or earlier, respectively.

Offsets and Time Code Display

The SYNC I/O Time Code Display continues to display actual incoming time code, regardless of any Session Start Offsets (External Time Code Offsets in Pro Tools 6.6.x) that are applied in Pro Tools.

To apply an offset to the session start time:
- In the Session Setup window, in the Session Start Offsets section (External Time Code Offsets section in Pro Tools 6.6.x), enter a time in an offset field.

To apply the same session start time to all devices:
- In the Session Setup window, select Link to apply the same offset value to all devices.

Generating & Regenerating Time Code

SYNC I/O generates LTC, VITC, and MTC simultaneously, obtaining time addresses from a variety of sources:
- When the Positional Reference is set to Generate, SYNC I/O generates LTC, VITC, and MTC from an internal time address clock. This is referred to as Generator Preset mode.
- When the Positional Reference is LTC, VITC, or Bi-Phase, SYNC I/O generates LTC, VITC, and MTC based on the time address of one of those sources. This is sometimes called regeneration or translation. For SYNC I/O, this is referred to as Read/Regeneration mode.

Time code generated by the SYNC I/O does not follow session Pull Up and Pull Down settings.

Read/Regeneration Mode

In this mode, SYNC I/O regenerates time code based on external positional reference information (LTC or VITC time code, or a Bi-Phase/Tach signal). Subject to certain conditions, three types of time code (LTC, VITC, and MTC) are simultaneously regenerated from the selected positional reference.
Requirements for Read/Regeneration of LTC, VITC and MTC

LTC The external positional reference must be moving at normal, 1x forward speed (±8%).

VITC The positional reference must be LTC or Bi-Phase/Tach, at any readable speed, forward or reverse, or when the positional reference is set to Generate. SYNC I/O will not regenerate VITC if the positional reference is VITC.

MTC In order for SYNC I/O to regenerate continuous MTC, the external positional reference must be moving at normal, 1x forward speed (±8%). Outside of this speed range and direction, MTC is generated in bursts every 200 milliseconds. This allows MTC-slaved devices to read VITC or Bi-Phase properly in either direction, and at speeds down to zero. SYNC I/O begins regenerating MTC as soon as it again detects a valid positional reference signal.

💡 To optionally mute idle time MTC output, see “MTC Output and Idle Muting” on page 53.

If the positional reference is LTC or VITC, SYNC I/O will regenerate time code addresses that match the incoming time code addresses. If the positional reference is a Bi-Phase/Tach signal, SYNC I/O will generate time code addresses starting at the Bi-Phase preset start time. (See “Bi-Phase/Tach Starting Frame” on page 45 for more information.)

Generator Preset Mode

In this mode, SYNC I/O generates time code internally from a start time based upon the Generator Preset Time. Using either SYNC I/O Setup (Windows only) or the SYNC I/O front panel controls, you can start, stop, resume, and reset time code generation.

When generating time code in Generator Preset Mode, the SYNC I/O time code generator is resolved (locked) to one of three possible sources, based upon the following Generator Reference rule.

Generator Reference Rule

- If the Clock Reference is set to Internal, LTC, Pilot Tone, Bi-Phase/Tach, Digital (AES/EBU), or Digital (Word Clock), then the time code generator will lock to the selected clock reference.

 – or –

- If the Clock Reference is set to one of the two video inputs (Video Ref In or Video In), then the time code generator will reference the Video Ref In connector.

Frame Rate Restrictions with Video Reference

In Generator Preset mode, if the Clock Reference is set to one of the two video inputs (Video Ref In or Video In), Pro Tools is restricted to generating time code at the incoming video frame rate.

With the SYNC I/O, if the video format is set to NTSC, only 29.97 fps and 29.97 DF fps may be chosen as the time code format, and, if the video format is set to PAL, only 25 fps may be chosen as the time code format.

In Generator Preset mode, if the Clock Reference is set to one of the two video inputs, 24 fps cannot be used as the SYNC I/O time code format.

These restrictions are removed when not in Generator Preset mode.
Generator Start Time

To set the generator start frame:

From Pro Tools:
- Configure the Session Setup window as appropriate for your system and the current project. Refer to the *Pro Tools Reference Guide* for specific instructions.

From the front panel:
1. Press Set, and use the Up or Down switches to display Set Gen (SE7 6En).
2. Press Set. One of the time code fields displayed will be flashing.
3. Press Up or Down to lower or raise the currently flashing value.
4. To set a time code setting and advance to the next field, press and release Down and Up simultaneously.
5. Repeat until you have finished setting SYNC I/O to the desired generator start time.
6. Press Set.

SYNC I/O retains the setting, even when the unit is powered off and on again, until you change it.

LTC Generation/Regeneration

Regenerating LTC

SYNC I/O will regenerate LTC whenever the external positional reference is moving at normal, 1x forward speed (±10%). Make sure LTC is correctly routed as explained in Chapter 2, “Installation and Configuration”. If you need to adjust the level of the SYNC I/O LTC output signal, see “Example: Adjusting LTC Gain” on page 36 for instructions. You can also adjust the SYNC I/O LTC servo gain, as described in “Servo Gain” on page 60.

To regenerate LTC

From Pro Tools:
- In the Sync Setup section of the Session Setup window, select any external positional reference (except Generate).

From the front panel:
- Press the Positional Reference switch to select an external positional reference (do not select GENERATE).

From SYNC I/O Setup software utility (Windows only):
- Select an external positional reference from the SYNC I/O Setup Positional Ref pop-up (except Generate).

SYNC I/O regenerates LTC as soon as it receives a valid positional reference signal.

Generating LTC

In Generator Preset mode, SYNC I/O can generate LTC using either an external or internal clock reference. Make sure LTC is correctly routed and that all your other gear is properly configured before you begin. See “Example: Adjusting LTC Gain” on page 36 for SYNC I/O LTC instructions. If necessary, adjust the input level for the destination device.
To generate LTC using Pro Tools:

1. In the Time Code Settings section of the Session Setup window, select Using SYNC under Generator.

2. Put Pro Tools online.

3. Start Pro Tools recording or playback. Pro Tools commands SYNC I/O to begin generating LTC with time addresses synchronized to the session time line.

To generate LTC using the front panel controls:

1. Press the Positional Reference switch to select GENERATE.

2. Configure the desired time code start in hours:minutes:seconds:frames using the Set, Up and Down switches. See “Generator Start Time” on page 49 for instructions.

3. To begin generating, press and release the RUN/STOP/CLEAR/ESC switch.

To generate LTC using SYNC I/O Setup software utility (Windows only):

1. Select Generate in the Positional Ref pop-up menu.

2. In the Generator/Bi-Phase Preset window (time fields), type in the desired time code start time, in Hrs:Min:Sec:Frm. To reset, click Zero.

3. To begin generating, click Run.

4. When you have finished generating the desired length of LTC, click Stop.

VITC Video Source Rule

Since SYNC I/O has two video inputs ("Video In" and "Video Ref In"), the following rule describes which of these two signals VITC is applied to.

- If the Positional Reference is set to Generate and the Clock Reference is set to either of the two video inputs, then VITC will be applied to the video signal at the Video Ref In connector and fed to the Video Out connector.

- Under all other combinations of Positional Reference and Clock Reference, VITC will be applied to the video signal at the Video In connector and fed to the Video Out connector.

In addition, SYNC I/O will not insert new VITC while reading VITC from an external source. This is a safety feature to prevent the loss of existing VITC in the video stream. VITC is never inserted when the Positional Reference is set to VITC or Auto Switch LTC/VITC.

Example Video Input Configuration

One common situation is transferring video from a source VTR (or a nonlinear video editing system) to a destination VTR (or a nonlinear video editing system). The video source signal is connected to one of SYNC I/O’s video input connectors according to the VITC Video Source rule.

The SYNC I/O Video Out signal is connected to the destination device. SYNC I/O is then able to stripe the second VTR’s videotape with VITC. (At the same time, you might also want to insert a window burn. See “Window Burn Display Options” on page 55.)

⚠️ Unlike LTC, SYNC I/O can regenerate VITC with both forward and reverse time code addresses.
To prevent destruction of the original VITC code, SYNC I/O will not re-apply (regenerate) VITC onto the same video stream from which it is reading VITC.

LTC If you want to use LTC as a positional source, do not select Auto Switch LTC/VITC.

External In order for SYNC I/O to regenerate VITC based on an external positional reference, you’ll need to select both a clock reference and a positional reference.

To regenerate VITC based on an external positional reference from the front panel:

1. Connect the video source to the SYNC I/O Video Ref In connector and loop to the SYNC I/O Video Input connector.
2. Press Set, and use the Up or Down switches to display VITC Insertion (VI7C In5).
3. Press Set.
4. Use the Down and Up switches toggle between On and Off.
5. Press Set to select VITC Insertion.
6. Make sure you have selected the appropriate format (NTSC or PAL, depending on your project). For instructions, see “Video Format/System” on page 61.
7. Press Set, and use the Up or Down switches to display VITC Generate Lines (6En LInE).
8. Press Set. The default line pair is 14/16, which is also the SMPTE-recommended setting.
9. Use the Down and Up switches to scroll through the parameter values and select a VITC line pair.
10. Press Set. The LED Time Code Display will return to showing time code numbers.

11 Select valid clock and positional references.

SYNC I/O will regenerate VITC and insert it onto the video signal (as soon as it receives a valid positional reference signal).

To regenerate VITC based on an external positional reference using SYNC I/O Setup software utility (Windows only):

1. Ensure that SYNC I/O is connected in-line with a video source and video destination.
2. Ensure that VITC Insertion Enabled is checked in the SYNC I/O Setup window and that you have selected the appropriate format (NTSC or PAL).
3. Use the VITC Generate Lines menu to configure the line pair, if necessary.
4. Select the appropriate clock reference.
5. Select either LTC or Bi-Phase/Tach from the SYNC I/O Setup Positional Reference pop-up window:

SYNC I/O will regenerate VITC and insert it onto the video signal (as soon as it receives a valid clock reference signal and positional reference signal).

Internal VITC Generation

SYNC I/O can also generate VITC internally, using its integral time code generating feature. In this mode (Positional Reference switch = Generate) you can use either an external clock reference, or the SYNC I/O internal crystal as a clock reference with a variable start time.

When generating VITC internally, if the insertion is not timed based upon an *upstream* video reference you may encounter repeated or skipped VITC frames. Be sure to check “VITC Timing Rule” on page 67 and “VITC Video Source Rule” on page 50.
To generate VITC internally using the front panel controls:

1. Ensure that SYNC I/O is connected in-line with a video source and video destination.

2. Press Set, and use the Up or Down switches to display VITC Insertion (VI7C In5). For detailed instructions, see “VITC Insertion” on page 58.

3. Use the Down and Up switches to toggle VITC Insertion On and Off.

4. When On is selected, press Set.

5. Press Set, and use the Up or Down switches to display VITC Generate Lines (6En LIN). The default line pair is 14/16, which is also the SMPTE-recommended setting.

6. Use the Down and Up switches to scroll through the parameter values and select a VITC line pair.

7. Press Set.

8. Using the Positional Reference switch, select Generate.

9. Set the time code start time. See “Generator Start Time” on page 49 for instructions.

10. Arm the destination VTR to record video, so that VITC can be inserted into the video signal, and be recorded on the destination videotape.

11. Make sure that your chosen clock reference is actually present and running, then press the SYNC I/O Run switch.

The time code addresses will begin to increment.

To pause or stop VITC from the front panel:

- Press and release the Run/Stop/Clear switch when you want to pause or stop the generating process.

To generate VITC Internally using SYNC I/O Setup software utility (Windows only):

1. Ensure that SYNC I/O is connected in-line with a video source and video destination.

2. Ensure that VITC Insertion Enabled is selected in the SYNC I/O Setup window, and that you have selected the appropriate format (NTSC or PAL).

3. If necessary, select onto which line pair you’ll be generating VITC using the VITC Generate Lines pop-up menu.

4. Select the appropriate clock reference, using SYNC I/O Setup’s Clock Ref selector.

5. From the Positional Ref selector, select Generate.

6. In the Generator/Bi-Phase Preset window, type in the desired time code start time, in Hrs:Min:Sec:Frm. To reset to 00:00:00:00, click Zero.

7. Click Set. Typically, at this point you would arm the destination VTR to record video, so that VITC can be inserted into the video signal, and be recorded on the destination videotape. Make sure that your chosen clock reference is actually present and running, and that it is synchronized with the incoming video signal.

8. Click Run to start. The time code addresses will begin to increment.

9. Click Stop when you want to pause or stop the generating process.

Regardless of whether you are generating or regenerating, an active video signal will need to be present at one of the SYNC I/O video inputs. Check to see if the machine is paused, stopped or unlaced.
MTC Generation/Regeneration

MTC (MIDI Time Code) is a serial digital signal. In many ways, you can think of it as an inaudible type of LTC that can be used by various MIDI devices.

MTC is available from the SYNC I/O MTC Out connector, which is a standard DIN-style 5-pin female MIDI connector.

To use MTC, connect MTC Out to a MIDI In connector of a device that can recognize and use MTC. Typically, this would be a console, sequencer, synthesizer or sampler keyboard, a drum machine or other device.

MTC Output and Idle Muting

MTC is normally output whenever LTC is output. Whenever LTC output stops, SYNC I/O will continue to output MTC in bursts of one frame every 200 milliseconds. This allows any connected MIDI-reading device to be continuously updated as to the position of VITC or Bi-Phase (either of which might be operating at slow or still speeds). Thus, you can still use a connected MIDI device for Auto-Spotting from VITC or Bi-Phase.

Optionally, this constant output can be set to mute when time code (LTC) is idle.

To mute idle-time MTC output:

From the front panel:

1. Press the Set, Up and Down switches to display Idle MTC (IdLE 7C).
2. Press Set to display the current state (On or Off).
3. Press Up or Down to toggle the Idle MTC setting.
4. Press Set.

Generating a Window Burn

SYNC I/O offers time code character generation (also known as window burn or dubbing). This superimposes onto a video signal a small area called a window dub (or window burn, or time code window) that displays time code in hours:minutes:seconds:frames

A window dub provides a visual cue to your location in a project, and can be helpful when spotting regions to video frames in Pro Tools, especially if your only time code reference from tape is LTC (Auto-Spot requires VITC).

The SYNC I/O character generator obtains its time code address from the chosen Positional Reference.
Window Dub Requirements

Existing Video Signal SYNC I/O can only burn a window dub onto an existing video signal. This means that at least one video “source” signal (from a VTR, nonlinear editing system, or other video device) must be present at one of the SYNC I/O video input connectors (Video In or Video Ref In). When generating a window dub, the VITC Timing Rule applies (see “VITC Timing Rule” on page 67.

SYNC I/O Output The signal from the SYNC I/O Video Out connector must be routed to a video destination such as another VTR or nonlinear editing system.

To burn a window dub onto a video signal from Pro Tools:

1. Choose Setups > Peripherals and click the Synchronization tab.
2. Enable Sync Setup to make the Window Dub controls available.
3. Click Enable Dub Window.

Size Sets the relative size of the window dub (Small or Large).

Vertical Position Sets the vertical position of the window dub, relative to the bottom of the video picture. The choices range from 10% From Bottom to 50% From Bottom, in 10% increments.

⚠️ “10% from Bottom” vertical position is outside the standard “safe title” area, which means it may not be visible on some video monitors.

Horizontal Position Sets the window dub’s relative horizontal position within the video picture. The choices include Extreme Left, Left, Center, Right and Extreme Right.

⚠️ The “Extreme” horizontal positions are outside the standard “safe title” area, which means they may not be visible on some video monitors.

Color Sets the color of the time code numbers in the window dub, and the color of the window dub’s background. The choices include White on Black Bkgnd; Black on White Bkgnd; White on Video Bkgnd; or Black on Video Bkgnd. (Video Bkgnd means that the window dub’s background is transparent, so that the time code numbers are displayed directly on top of the video signal, without a contrasting background box.) The default setting is White on Black Bkgnd.

5. After configuring the dub window settings, click OK to close the Peripherals window.
To enable a window dub using the front panel controls:

1. Press Set, and use the Down and Up switches to display Burn Enabled (burn EnA).

2. Press Set. The LED Time Code Display will switch to display the current On or Off setting for Window Burn.

3. Use the Down and Up switches to switch between the parameter values.

4. Press Set.

Based on the selected positional reference, the time code character generator burns time code addresses onto any video signal passing through SYNC I/O.

Window Burn Display Options

If you need to change the appearance of the window dub—in terms of size, vertical position, horizontal position, and color—you need to use Pro Tools or SYNC I/O Setup software utility (Windows only). These parameters cannot be adjusted from the SYNC I/O front panel controls.

Default Window Burn settings are listed in “Restoring Factory Settings” on page 64.

To configure a window dub using SYNC I/O Setup (Windows only):

1. In the Dub Window section of SYNC I/O Setup, select Window Enabled.

2. Specify the appearance of the window dub with the pop-up menus for Vertical Position, Horizontal Position, and Color.
Chapter 5

Additional Operational Information

Front Panel Generator/Parameter Controls

This section details the parameters available from the multi-function SET, UP, DOWN and RUN/STOP, CLEAR switches. (Referred to as Set, Up, Down and Run). For details on the multi-function Generator/Parameter switches, see “Front Panel Generator/Parameter Switches” on page 35.

Parameters

SYNC I/O parameters are selected and edited using the four Generator/Parameter switches.

To select SYNC I/O front panel parameters:

1. Press Set.
2. Use the Up and Down switches to scroll through available parameters, described below.

The 7-segment LEDs in the Generator/Parameter Display abbreviate some parameter names using numerals to represent letters (such as “5” to represent “S” or “s”). The following table identifies each of these abbreviations.

<table>
<thead>
<tr>
<th>LED</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE7 6En</td>
<td>Set Generator Start Time</td>
</tr>
<tr>
<td>dI6 rEF</td>
<td>Digital Reference</td>
</tr>
<tr>
<td>SPL FrEC</td>
<td>Sample Freq (Rate)</td>
</tr>
<tr>
<td>PuLL r7E 1</td>
<td>Pull Up/Down 0.1%</td>
</tr>
<tr>
<td>PuLL r7E4</td>
<td>Pull Up 4.167%, Down 4.0%</td>
</tr>
<tr>
<td>bASE CLOC</td>
<td>External Clock Out</td>
</tr>
<tr>
<td>VI7C InS</td>
<td>VITC Insertion</td>
</tr>
<tr>
<td>rdr LInE</td>
<td>(VITC) Reader Line</td>
</tr>
<tr>
<td>6En LInE</td>
<td>(VITC) Generate Line</td>
</tr>
<tr>
<td>burn EnA</td>
<td>Window Burn On/Off</td>
</tr>
<tr>
<td>FrEE LEn</td>
<td>Freewheel Duration</td>
</tr>
<tr>
<td>L7C 6Aln</td>
<td>LTC Output gain</td>
</tr>
<tr>
<td>SErVo Gn</td>
<td>LTC Servo gain</td>
</tr>
<tr>
<td>PICH HLd</td>
<td>Pitch Hold On/Off</td>
</tr>
<tr>
<td>bIPH PPF</td>
<td>Bi-Phase Pulse-per-frame</td>
</tr>
<tr>
<td>bIPH SI6</td>
<td>Bi-Phase Signal Configuration</td>
</tr>
<tr>
<td>VIdEO SY</td>
<td>Video Format (NTSC/PAL)</td>
</tr>
<tr>
<td>IdLE 7C</td>
<td>Idle MTC On/Off</td>
</tr>
<tr>
<td>USD CPA7</td>
<td>USD Compatibility On/Off</td>
</tr>
</tbody>
</table>
Set Generator Start Time

Lets you set a start time for the SYNC I/O time code generator.

```
SET GEn
```

See “Generator Start Time” on page 49.

Digital Clock Reference

SYNC I/O can use AES/EBU or Word Clock (1x) for digital clock reference.

```
d16 rEF
```

See “Digital Clock” on page 37.

Sample Rate

Selects the SYNC I/O sample rate.

```
SPL Fr EC
```

See “Sample Rate” on page 17.

Pull Rate

Two Pull Rate settings enable 0.1%, and 4%, Pull Up or Pull Down for the current sample rate.

```
PULL r7E
```

Pull Rate1 Lets you enable 0.1% pull up or down.

Pull Rate4 Lets you enable 4.167% pull up, or 4.0% pull down, when available.

Base Clock

Configures the Word Clock Out port. Choices are Session (1x the base session sample rate), or 256x (for Slave Clock devices).

```
BASE CLOC
```

💡 The base sample rate is 44.1 kHz when session sample rate is 44.1, 88.2, or 176.4 kHz, or 48 kHz when session sample rate is 48, 96, or 192 kHz.

VITC Insertion

When selected, VITC will be inserted onto the outgoing video signal—assuming that a video signal is present at one of the SYNC I/O video inputs, and that SYNC I/O is in a valid mode for inserting VITC.

```
VITC InS
```

To configure SYNC I/O to insert VITC using the front panel:

1. Select VITC Insertion (VITC InS) using the Set, Down, and Up switches.
2. Press Set again. The Time Code Display shows On or Off.
3. Use Down an Up to toggle the choices.
4. Press Set when the desired choice is shown.

VITC Read Lines

This setting determines which line pair of incoming video is used for the VITC source.
To choose the VITC read lines:

1. Select VITC Read Lines (rdr LInE), using the Set, Down, and Up switches.
2. Press Set switch. The Time Code Display will shows one of the parameter values:
 - Auto (ALL-LInE)—where SYNC I/O will search all lines and select the first valid line pair automatically
 - the currently selected read lines, if different.
3. Use Down and Up to scroll parameters.
4. Press Set when the desired read line is shown.

VITC Generate Lines

This setting determines the line pair of the video signal at the Video Out connector onto which SYNC I/O inserts VITC. Normally, this should be left at the default setting of 14/16.

To choose the VITC generate lines:

1. Select VITC Generate Lines (6En LInE), using the Set, Down, and Up switches.
2. Press Set again. The LED Time Code Display displays the current lines.
3. Use Down and Up to scroll parameters.
4. When you have chosen your desired option, press Set. SYNC I/O will retain the setting, even when the unit is powered off and on again, until it is changed.

Window Dub/Burn

By enabling this setting, you can superimpose a window dub onto an incoming video signal.

The front panel lets you enable window dub but does not let you adjust any window options.

To enable or disable the SYNC I/O window dub from the front panel:

1. Select Burn Enabled (burn EnA), using the Set, Down, and Up switch.
2. Press Set again.
3. Use Down and Up to toggle between on/off.
4. When you have chosen your desired option, press Set. SYNC I/O will retain the setting, even when the unit is powered off and on again, until it is changed.

See “Generating a Window Burn” on page 53 for Pro Tools and SYNC I/O Setup software utility window dub instructions. See “SYNC I/O Defaults” on page 64 for default display settings.

Freewheel Length/Duration

Freewheel Length sets the period of time for which SYNC I/O will continue to regenerate time code when incoming time code is interrupted.

See “Freewheel Duration” on page 43 for an explanation of this feature.
To set the freewheel duration:

1. Select Freewheel Length (FrEE LEn), using the Set, Down, and Up switches.
2. Press Set again. The LED Time Code Display displays the current setting, in frames.
3. Use Down and Up to scroll parameters.
4. Press Set when the desired value is shown.

LTC Output Level/Gain

Adjusts the audio level of the SYNC I/O LTC output, from –24 dBu to +9 dBu.

To set the LTC output level:

1. Select LTC Gain (L7C 6AIn), using the Set, Down, and Up switches.
2. Press the Set switch again. The LED Time Code Display shows the current setting, in dBu.
3. Use the Down and Up switches to switch between the parameter values.
4. When you have chosen your desired option, press Set.

Servo Gain

This setting provides a user selectable LTC input gain offset. Selectable from the front panel only, this parameter can significantly lessen or remove jitter on word clock while resolving to LTC (though it can slightly increase lockup time).

To set the LTC servo gain:

1. Select Servo Gain (SErVo Gn) using the Set, Down, and Up switches.
2. Press Set again. The LED Time Code Display shows the current setting (–001 is the default).
3. Use the Down and Up switches to display another parameter value. Servo gain provides four gain settings.
4. When you have chosen the desired option, press Set.

Pitch Memory/Hold

Pitch Memory is useful when resolving SYNC I/O to off-speed, free-running LTC. When Pitch Memory is enabled, SYNC I/O will remain at a pitch (sample rate) that corresponds to the last known clock reference speed.

To enable or disable SYNC I/O pitch memory feature:

1. Select Pitch Hold (PICH HLd), using the Set, Down, and Up switches.
2. Press Set again. The LED Time Code Display will display the current setting (on or off).
3. Use Down and Up to scroll parameters.
When you have chosen your desired option, press Set. SYNC I/O retains the setting, even when powered off, until it is changed.

Bi-Phase/Tach Pulses Per Frame

Bi-Phase/Tach involve several settings, including pulse per frame. This sets the number of Bi-Phase/Tach pulses per frame of time code.

To set the pulses per frame value for a Bi-Phase/Tach signal:

1. Select Bi-Phase/Tach Pulses Per Frame (bIPH PPF), using the Set, Down, and Up switches.
2. Press Set again. The LED Time Code Display shows the current parameter values, in pulses per frame. The readout will look similar to this: 0002
3. Use Down Up to scroll parameters. Pressing and releasing the switches will change the value by just one pulse per frame. Pressing and holding the switches scrolls at a faster speed.
4. When you have chosen your desired option, press Set. SYNC I/O will retain the setting, even when the unit is powered off and on again, until it is changed.

Bi-Phase/Tach Input Signal

In addition to other Bi-Phase/Tach parameters, the Input Signal defines the *direction* of the Bi-Phase/Tach signal.

Video Format/System

Selects the format (NTSC or PAL) for both the incoming and outgoing video signals.

Video SY

NTSC The standard for North and South America, Japan, and certain other parts of the world

PAL Used in most of Europe, Asia, and Africa. Users of SECAM video (for France, Russia, and other parts of the world) should select PAL.

Be sure you have selected the correct video format. SYNC I/O will not warn you if you have chosen the wrong one.

To select the desired video system:

1. Select Video System (VIDeo SY), using the Set, Down, and Up switches.
2. Press Set again. The LED Time Code Display will show one of the following:
 - NTSC (n75C)
 - PAL (PAL)
3. Use Down and Up to toggle parameters.
4. When you have chosen your desired option, press Set.

SYNC I/O will retain the setting, even when the unit is powered off and on again, until it is changed.

MTC Idle Mute

MTC is output constantly whenever SYNC I/O is generating time code. Optionally, this output can be muted when time code (LTC) is idle.

Idle TC

See “MTC Output and Idle Muting” on page 53.
USD Compatibility Mode

This setting lets you turn USD emulation on and off, to support older Pro Tools systems and other audio systems.

Using Fader Start

SYNC I/O provides six GPI outputs in total, two TTL-level and four relays. Together, this combination of outputs makes it possible for SYNC I/O to provide Fader Start capability.

![Utilization of Fader Start has specific wiring requirements. See “GPI Relay Wiring for Fader-Start” on page 90.]

Fader Start allows faders in Pro Tools to trigger external devices to play and stop.

To implement Fader Start, Pro Tools maps the first two visible auxiliary input channels in a session to GPI Relay outputs 0 and 1 (first being left-to-right in the Mix window, top-to-bottom in the Edit window).

Example Fader Start Application

In a typical scenario, the Fader Start feature controls playback of a CD player. The CD player outputs are routed into a Pro Tools stereo Aux Input. As the Aux channel fader is moved above –120 dB, playback of the CD player is automatically triggered. Likewise, as the fader is moved below –120 dB, playback is automatically stopped.

💡 To rearrange tracks, drag the Track Name left or right in the Mix window, or up or down in the Edit window. See the Pro Tools Reference Guide for more information.

To configure Pro Tools tracks for Fader Start Play and Stop:

1. Use the New Track dialog to create two new auxiliary input tracks. If you already have aux tracks, you will use the first and second (top-most in the Edit window, left-most in the Mix window).

2. When the first visible aux input in a Pro Tools session is above –120 dB, GPI Relay output 3 (Fader Start #1) will be enabled; otherwise, it will be disabled.

Similarly, when the second visible aux input in a Pro Tools session is above –120 dB, GPI Relay output #4 (Fader Start #2) will be enabled; otherwise, it will be disabled.

If you rearrange channel strips in the Pro Tools Mix or Edit windows, the two GPI outputs will update dynamically to reflect the current state. The Fader Start channel must be in a Show Track state (not hidden). See “GPI Relay Wiring for Fader-Start” on page 90 for additional GPI information.
Calibrating the SYNC I/O Oscillator

SYNC I/O provides a feature for calibrating the frequency of the on-board crystal oscillator. This allows SYNC I/O to be used as an extremely accurate frequency reference while in Internal/VSO mode.

With normal usage, SYNC I/O should never require recalibrating. Each unit is factory calibrated to within +/- 5 ppm (parts per million).

You may want to recalibrate SYNC I/O in the following situations:

- If greater than 5 ppm accuracy is required.
- If the unit needs to be matched to a unique (nonstandard) frequency.
- To precisely compensate for component aging.
 - and –
- To restore the original factory setting.

💡 Oscillator recalibration does not occur during firmware updating or when resetting SYNC I/O to factory defaults (see “Restoring Factory Settings” on page 64).

Oscillator Resolution and Stability

SYNC I/O calibration units are in 1/64th of a sample period. What this means is that SYNC I/O can theoretically be calibrated to about 1/3 of a ppm. The unit will maintain calibration across a wide range in temperature. Long-term drift should be less than 1 ppm per year due to aging of the crystal. To put this in perspective, most digital audio products are accurate to within 20 to 50 ppm and drift with temperature. SYNC I/O’s accuracy is possible because it contains a low-jitter, high-stability temperature controlled crystal oscillator.

Warm Up SYNC I/O Before Recalibrating

Before you begin the calibration procedure, power on SYNC I/O and allow it to warm up for at least five minutes. The temperature of the room (or chassis) isn’t critical during the calibration procedure. However, if you need better than 3 ppm accuracy, it is recommended that you allow SYNC I/O to warm up for at least 30 minutes and that the chassis be at normal operating temperature.

The original Oscillator Calibration value is printed on the factory sticker, on the SYNC I/O bottom panel.

To restore the SYNC I/O oscillator calibration to its factory setting:

1. Press Set, then press Up until Video System (VIdEo SY) is displayed in the LED readout.

2. With the LED Time Code Display showing VIdEo SY, press and hold the Up switch. While you continue to hold that switch, press the Clock Reference switch momentarily, and then release both switches. The LED Time Code Display will read:

```
OSC CAL
```

3. Press Set again. The LED Time Code Display shows the current parameter value, which shows a sample rate frequency deviation from -0999 to 0999.

4. Take note of the Oscillator Calibration value printed on the factory sticker, on the SYNC I/O bottom panel.

5. Use the Down and Up switches to scroll through the parameter values.
6 When you reach a value that matches the sticker’s value, stop scrolling and press Set. The LED Time Code Display will return to showing time code numbers. Your SYNC I/O is now properly calibrated.

The next time you press Set, the LED Time Code Display will again show OSC CAL. If you then press the Down switch, you’ll disengage the Oscillator Calibration parameter name. To change the setting once again, you’ll need to repeat steps 1 through 6.

Factory Default Settings

The following table lists the default settings of each parameter.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Generator Start Time</td>
<td>00:00:00:00</td>
</tr>
<tr>
<td>Digital Reference</td>
<td>AES/EBU</td>
</tr>
<tr>
<td>Sample Freq (Rate)</td>
<td>44.1 kHz</td>
</tr>
<tr>
<td>VITC Insertion</td>
<td>On</td>
</tr>
<tr>
<td>Pull Rates</td>
<td>Off</td>
</tr>
<tr>
<td>Base Clock</td>
<td>Session (1x Word)</td>
</tr>
<tr>
<td>(VITC) Reader Line</td>
<td>All</td>
</tr>
<tr>
<td>(VITC) Generate Line</td>
<td>14–16</td>
</tr>
<tr>
<td>Window Burn On/Off</td>
<td>On (Enabled)</td>
</tr>
<tr>
<td>Freewheel Duration</td>
<td>8 frames</td>
</tr>
<tr>
<td>LTC Output gain</td>
<td>3 dBu</td>
</tr>
<tr>
<td>Servo gain</td>
<td>–001</td>
</tr>
<tr>
<td>Pitch Hold</td>
<td>Off</td>
</tr>
<tr>
<td>Bi-Phase Pulse-per-frame</td>
<td>0100</td>
</tr>
<tr>
<td>Bi-Phase Signal</td>
<td>A Lead B</td>
</tr>
<tr>
<td>Video System/Format</td>
<td>NTSC</td>
</tr>
<tr>
<td>Idle MTC Enabled</td>
<td>On</td>
</tr>
<tr>
<td>Window Burn options:</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>Size: Large</td>
</tr>
<tr>
<td></td>
<td>Vertical Position: 20%</td>
</tr>
<tr>
<td></td>
<td>from Bottom</td>
</tr>
<tr>
<td></td>
<td>Horizontal Position:</td>
</tr>
<tr>
<td></td>
<td>Center</td>
</tr>
<tr>
<td></td>
<td>Color: White on Black</td>
</tr>
<tr>
<td></td>
<td>background</td>
</tr>
<tr>
<td>Variable Speed Offset (VSO)</td>
<td>Off</td>
</tr>
</tbody>
</table>
Managing and Selecting Video Inputs

SYNC I/O has two independent video inputs, referred to as “Video In” and “Video Ref” on the SYNC I/O rear panel. These let you use one of the video inputs as a Clock Reference (the resolver sample clock master reference) and use the other input for working with VITC time code and the character generator (window dub).

If you have just a single video source, SYNC I/O provides a very simple method for connecting your single video source to both of the video inputs. See “Using Video Inputs with VITC and the Character Generator” on page 65.

In a typical video setup, you will supply a reference video signal (black burst or color bars) to your VCR and to the SYNC I/O Video Ref input. You will then connect the VCR’s video output to the SYNC I/O Video In port. Finally, the SYNC I/O Video Out will be fed to your picture monitor and/or another VCR.

Using Video Inputs with VITC and the Character Generator

Unlike selecting a video input to use for Clock Reference, input selection for VITC and character generator functions follows a simple rule. This rule is explained in the following sections and in Figure 1 on page 66.

Video Ref

If the Clock Reference is one of the two video inputs, and the Positional Reference is Generate, then VITC and character generator functions are applied to the video arriving at the Video Ref input connector. This helps you avoid re-patching video cables whenever you want to stripe a videotape with your reference black-burst or color bars, along with internally generated time addresses for VITC (and/or LTC, and/or CG dub window). In Figure 1 on page 66, this scenario is identical to “Route A.”

Video In

For all other combinations of Clock Reference and Positional Reference, VITC and character generator functions are applied to the video signal arriving at the Video In connector. In this way, SYNC I/O can read VITC from your videotape, or add VITC with or without character generation (window burn) while dubbing to a second VCR. In Figure 1 on page 66, this scenario is identical to “Route B.”

To understand why these rules exist, let us examine how the circuitry works within SYNC I/O (see Figure 1 on page 66):

The clock reference (labelled Sample Clock Resolver Circuit in Figure 1 on page 66) is selectable at all times. You can decide which input signal to use to generate the digital clock signal.

However, when the clock reference is set to Video, the positional (time code) reference circuitry (labelled Time Code and Window Dub Circuit in the illustration) is not switchable. This is because the positional (time code) reference circuitry is always used to derive time code, whether SYNC I/O is reading incoming time code or generating new time code. Even in Generate mode, SYNC I/O needs to use this circuitry to detect the frame edge of the video in order to generate time code.
Video routing is automatically switched within the Universal Slave Driver, according to the Positional Reference and Clock Reference settings:

- Route A — Positional Reference = Generate; Clock Reference = Video Ref In or Video In
- Route B — Any other combination of Positional Reference and Clock Reference settings

Figure 1. Video Input Flow diagram
Additional Synchronization Information

Video and VITC Signals

Black Burst and House Video Reference

A black burst signal is essentially a “position-less” video signal. As with any “shared” video signal, you’ll want to ensure that your video feed comes from a properly buffered and distributed source, such as a video distribution amplifier, or the house video reference/black burst output of another device in the chain.

Resolving to video instead of house video reference (black burst)

There are several reasons why you would resolve SYNC I/O to a video signal rather than house synchronization.

When House Video Reference is Unavailable Resolve to a video signal whenever you are synchronizing Pro Tools (or other device) to video, and you either:

- Do not have a house video reference.
- or -

- Your setup includes equipment that lacks house video reference input and synchronization capability (including consumer grade VCR, or some entry-level PC-based editing systems).

Simple Setups In a modest setting with one or two VTRs, Pro Tools, and SYNC I/O, using the video signal as the clock reference is often satisfactory. In these situations, proper synchronization can be achieved using the video signal as clock reference.

Why VITC is Unavailable for Clock Reference

VITC itself does not provide clock information directly as part of its time code information, only positional information. However, since VITC is always embedded into a video signal, that video signal can be used as a clock reference by selecting Video Input as the clock reference (or Video Ref In if your facility has a house video reference).

VITC Timing Rule

The following rule is in effect whenever you are generating or regenerating VITC.

- Inserted VITC should be monotonic, regardless of whether it is being regenerated or generated.

By monotonic, it is meant that the VITC should be smoothly ascending or descending, with no repeated or skipped frame addresses. In order to achieve monotonicity, the external positional reference (while regenerating) or the clock source (in Generator Preset Mode) must be synchronous with the video signal onto which the VITC is being inserted.
Example of VITC Timing Rule

As an example, if you are using LTC as a positional reference from a 3/4-inch U-Matic VTR, then that VTR should be referenced to the same video signal that you are applying to SYNC I/O. As another example, in Generator Preset Mode (Positional Reference = Generate), a clock reference of Internal is not a good choice, simply because the SYNC I/O internal crystal runs asynchronously with respect to the supplied video signal, and thus repeated or skipped frame addresses are sure to eventually occur.

LTC Signals

Because it’s an analog audio signal, LTC can sometimes be susceptible to either tape dropouts (tape shedding), or to level mismatches between the LTC source and the LTC input. The SYNC I/O freewheeling feature allows you to compensate for brief time code dropouts. However, if you have serious dropouts, you may not be able to sustain accurate synchronization.

If you plan to use LTC as a clock reference (whether or not you are also using it as a positional reference), you will need to ensure that your LTC is recorded at as high a level as possible without distortion, and that there are no dropouts longer than 1/80th of a frame.

SYNC I/O reads LTC most reliably when fed with a LTC signal of at least –12 dBu (and preferably 0 dBu to +3 dBu.)

LTC Servo Gain

You can adjust the servo gain of the SYNC I/O LTC input using the front panel controls. See “Servo Gain” on page 60 for more information.

Working with Analog Machines

It is good practice on a 24-track analog tape machine to record time code on Track 24 at a reference level of –10 dBu (or lower), with Track 23 left blank as a “guard” track. This practice avoids crosstalk “bleed” that can occur between the time code track and otherwise adjacent audio tracks. Time code (which is a mid-frequency alternating pitch square wave) is very sensitive to crosstalk from adjacent tracks, and conversely you don’t want audible time code leaking onto your audio tracks.

If your ATR is under the control of a synchronizer, you must make sure that the synchronizer and SYNC I/O are both locked to the same reference source (such as, typically, from a video black burst generator.)

Auto-Switch LTC/VITC

Auto-Switch LTC/VITC lets SYNC I/O automatically select between these two (time code) sources.

LTC and VITC both provide useful and unique capabilities. For instance, it is impossible to read LTC off a paused videotape. Consequently, using only LTC, there’s no way you can use Pro Tools to perform Auto-Spotting of regions when the tape is paused. However, VITC continues to be read as long as the picture remains visible, so it can be used as a positional reference when the VTR is paused. On the other hand, VITC cannot be read at fast winding speeds (except by broadcast-quality VTRs); LTC can be read at fast winding speeds, as long as its signal remains within the high-end frequency response of the ATR or VTR.
Appendix A: Additional Synchronization Information

Examples of Auto-Switch LTC/VITC

- SYNC I/O will switch to LTC for positional reference during hi-speed searching and cueing, for example, or whenever the tape speed is too high to read VITC.
- SYNC I/O will switch to VITC if LTC stops or is unavailable. This will include, for example, if a tape is paused or parked.
- If both LTC and VITC are available, SYNC I/O chooses which one to use based on the speed of playback. The switch-over point is approximately 75% of full 1x playback speed. Above 75% playback speed, LTC is favored; below 75% speed, VITC is favored.

If a dropout occurs, SYNC I/O waits until the freewheel duration has expired before attempting to switch over to the opposite source. If neither source is available, SYNC I/O will stop reading time code.

Digital Clock Signal Types

A reference clock signal is part of any digital recording system. It is required because whenever digital audio information is mixed together or passed between devices, the playback samples must be aligned with the recording samples. In some cases (such as with AES/EBU or S/PDIF digital interfaces), the clock signal is embedded in the data stream itself. In other cases, such as SDIF, the clock signal is carried as an entirely separate signal from the digital audio sample data.

SYNC I/O is able to resolve to AES/EBU and Word Clock.

AES/EBU

Some professional digital audio products use AES/EBU “null clock” (which is an AES/EBU data stream that contains only clock information only and no audio information) as a system clock reference source. These systems rely upon a single AES/EBU master clock source that is distributed throughout a digital audio facility, in much the same way that house synchronization is distributed throughout a video facility. If you are connecting SYNC I/O to such a system, you will want to use the SYNC I/O AES/EBU input as the clock reference connection, so that all system components are referenced to the same time base. (Note that AES/EBU does not support 176.4 kHz and 192 kHz sample rates.)

In some cases (such as using SYNC I/O as a stand-alone clock resolver or time code generator without a digital audio workstation), you may wish to use an audio DAT machine (or other similar device) as a source of AES/EBU null clock, and resolve your system to this reference source. In this case, the audio sample data in the AES/EBU data stream is stripped off, and only the clock information is used.

Word Clock

Many professional digital audio products—including open-reel multitrack tape recorders, digital mixing consoles, and the Tascam DA-88 modular digital multitrack—have Word Clock (1x sample rate) connectors.

Word Clock allows the DA-88 (and other Word Clock-compatible devices) to send or receive external clock information which controls the sample rate, which in turn (where applicable) controls the play and record speed.
Using just Word Clock, it is possible to create a “chain” of digital devices in your studio by picking one source as the Word Clock master, and configuring other sources as Word Clock slaves.

Bi-Phase/Tach

Bi-Phase and Tach are used with mag machine, 16, 35, and 70 mm projectors, flatbed editing systems and other types of motor-driven film equipment. Bi-Phase (sometimes called Quadrature Sync) and Tach information are similar, though they do differ.

Bi-Phase A Bi-Phase signal consists of two square waves, which are generated directly by a device’s transport mechanism, and which are 90° out-of-phase with one another. As a Bi-Phase-generating device plays it outputs a steady stream of square waves that SYNC I/O can use as its clock reference, at nearly any speed including still/paused.

SYNC I/O uses the phase relationship between the two square waves to determine the device’s direction (forward or reverse). However, this is relevant only when SYNC I/O is using the Bi-Phase signal as a positional reference.

Tach A Tach signal is a variation of Bi-Phase. With Tach’s two signals, one is used only as the direction indicator, while the other is used as the velocity, or rate indicator. SYNC I/O uses this rate signal when resolving to Tach as a clock reference.

There are several different standards for the number of pulses-per-frame for Bi-Phase or Tach devices. Using SYNC I/O Setup software utility’s Pulse Per Frame setting, you can set SYNC I/O to match the PPF rate of the external device’s Bi-Phase/Tach encoder.

Strictly speaking, Bi-Phase/Tach signals are clock reference signals, and do not contain positional information of their own. However, they do contain enough information for SYNC I/O to calculate positional information.

Bi-Phase/Tach signals use two square waves to generate pulses that can function as a clock reference. The two square waves are 90° out-of-phase, in a pattern that resembles this:

![Illustration of Bi-Phase/Tach signals]

With a Bi-Phase signal, SYNC I/O can deduce the direction (forward or reverse) of the signal based upon which wave is read “high” relative to the other. For instance, with some film equipment, when the device is running forward, it will generate a Bi-Phase signal where the “A” wave leads the “B” wave—that is, where the A wave peaks before the B wave peaks. When the device is in reverse, the B wave will lead the A wave.

However, some film equipment works in the opposite manner, which is why the SYNC I/O Input Signals option lets you make the appropriate selection (Fwd = A leads B, or Fwd = B leads A).

Calculating the direction of a Tach signal is slightly different. As you may recall, Tach also uses two signals. The “A” signal is a square wave that provides clock information; the “B” signal is in a steady state (high or low) that indicates the direction. Unfortunately, not all Tach-generating equipment uses the B signal in the same way. Fortunately, the SYNC I/O Input Signals options allows you to choose the appropriate method (Tach: Fwd = B is Low, or Tach: Fwd = B is High).
This explains how SYNC I/O can use a Bi-Phase/Tach signal to deduce the direction, and how it also uses the signal as a clock reference—as long as SYNC I/O is told the starting frame of the first clock signal.

Pilot Tone

SYNC I/O can resolve to an external Pilot Tone signal for synchronizing to (or transferring audio from) certain types of open-reel audio tape recorders.

In general, Pilot Tone is a sine wave reference signal running at the “line frequency” or “mains frequency,” meaning the same frequency transmitted by the AC line voltage from the local power utility.

Pilot Tone is used on location film shoots to establish a common synchronization reference between a film or video camera with a portable 1/4-inch analog ATR (such as those made by Nagra or Stellavox). On location, Pilot Tone is derived by clock referencing the camera to the local AC line frequency (which is 60 Hz or 50 Hz depending on the country of origin), and this same frequency is then used to clock-reference the ATR. The result is that both the camera and the ATR will run at the same speed.

You can think of Pilot Tone as a kind of inexpensive and readily available “house sync” for location production. Increasingly, it’s being replaced by time code, since new-generation film cameras as well as many portable DAT recorders are time code-capable.

Please note that Pilot Tone contains no positional information; it is simply a clock reference. Most 1/4-inch machines have a center track for time code or pilot.
Technical Specifications

General

<table>
<thead>
<tr>
<th>Pull Up/Down</th>
<th>Sample Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>44100</td>
</tr>
<tr>
<td>+4.1667% and +0.1%</td>
<td>44100</td>
</tr>
<tr>
<td>+4.1667%</td>
<td>44100</td>
</tr>
<tr>
<td>+4.1667% and −0.1%</td>
<td>44100</td>
</tr>
<tr>
<td>+0.1%</td>
<td>44100</td>
</tr>
<tr>
<td>−0.1%</td>
<td>44100</td>
</tr>
<tr>
<td>−4.0% and +0.1%</td>
<td>44100</td>
</tr>
<tr>
<td>−4.0%</td>
<td>44100</td>
</tr>
<tr>
<td>−4.0% and −0.1%</td>
<td>44100</td>
</tr>
</tbody>
</table>
General

<table>
<thead>
<tr>
<th>Frame Rates</th>
<th>30 fps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 fps drop-frame</td>
</tr>
<tr>
<td></td>
<td>29.97 fps</td>
</tr>
<tr>
<td></td>
<td>29.97 fps drop-frame</td>
</tr>
<tr>
<td></td>
<td>25 fps</td>
</tr>
<tr>
<td></td>
<td>24 fps</td>
</tr>
<tr>
<td></td>
<td>23.976 fps</td>
</tr>
<tr>
<td>Variable Speed Override</td>
<td>±699 cents (±58.25%)</td>
</tr>
<tr>
<td>Aging:</td>
<td>±2 ppm/year typical</td>
</tr>
<tr>
<td>Burn-in Window</td>
<td>Position: 5 horizontal and vertical positions</td>
</tr>
<tr>
<td>Size:</td>
<td>Large and small text</td>
</tr>
<tr>
<td>Color:</td>
<td>Black or white text on white or black background or keyed</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Height: 1RU/1.75" (4.45 cm)</td>
</tr>
<tr>
<td></td>
<td>Width: 19.0" (48.26 cm)</td>
</tr>
<tr>
<td></td>
<td>Depth: 10.5" (26.67 cm)</td>
</tr>
<tr>
<td>Weight</td>
<td>5.0 lbs (2.27 kg)</td>
</tr>
<tr>
<td>Vibration Resistance</td>
<td>5 mm displacement, 10 to 55 Hz, each axis</td>
</tr>
</tbody>
</table>
General

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shock</td>
<td>5 G max</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>32 to 131 degrees F (0 to 55 degrees C)</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-40 to 176 degrees F (-40 to 80 degrees C)</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>0 to 95%, non-condensing</td>
</tr>
<tr>
<td>Power Requirements</td>
<td></td>
</tr>
<tr>
<td>Voltage:</td>
<td>85 to 264 VAC</td>
</tr>
<tr>
<td>Frequency:</td>
<td>47 to 63 Hz autoswitching</td>
</tr>
<tr>
<td>Wattage:</td>
<td>9.5 W typical, 30 W maximum</td>
</tr>
<tr>
<td>Connector:</td>
<td>3-pin, AC and ground (IEC 950:320;3.2.4)</td>
</tr>
<tr>
<td>Agency Compliance</td>
<td>Meets FCC Part 15 Class A limits, CD EN 55022A, CE EN 60950, CE EN 55081:1, UL 1419 and CSA 22.2</td>
</tr>
</tbody>
</table>
Rear Panel Connectors

<table>
<thead>
<tr>
<th>Connector</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC In</td>
<td>Format: SMPTE/EBU 80-bit longitudinal, drop frame/non-drop frame</td>
</tr>
<tr>
<td></td>
<td>Connector: 3-pin XLR female per IEC 268-12</td>
</tr>
<tr>
<td></td>
<td>Speed Range: 1/30 to 80X play speed, forward or backward</td>
</tr>
<tr>
<td></td>
<td>Level: –24 dBu to +9 dBu, differential (pin 2 hot)</td>
</tr>
<tr>
<td></td>
<td>Impedance: 200K ohms</td>
</tr>
<tr>
<td>LTC Out</td>
<td>Format: SMPTE/EBU 80-bit longitudinal, drop frame/non-drop frame</td>
</tr>
<tr>
<td></td>
<td>Connector: 3-pin XLR male per IEC 268-12</td>
</tr>
<tr>
<td></td>
<td>Speed Range: ±10% of play speed</td>
</tr>
<tr>
<td></td>
<td>Level: –24 dBu thru +9 dBu RMS, differential (pin 2 hot)</td>
</tr>
<tr>
<td></td>
<td>Level Default: 0 dBu RMS, 1.52V p-p ±10mV</td>
</tr>
<tr>
<td></td>
<td>Output Impedance: 5K ohms</td>
</tr>
<tr>
<td></td>
<td>Load Impedance (minimum): 100 ohms</td>
</tr>
<tr>
<td></td>
<td>Rise/Fall Time: 42us ± 1us measured between 10% and 90% p-p</td>
</tr>
<tr>
<td></td>
<td>S/N Ratio: –60 dB RMS at 0 dBu level</td>
</tr>
<tr>
<td>Video (Main) In</td>
<td>Format NTSC or PAL composite video</td>
</tr>
<tr>
<td></td>
<td>Level: 1V p-p</td>
</tr>
<tr>
<td></td>
<td>Termination: 75 ohms</td>
</tr>
</tbody>
</table>
Rear Panel Connectors

<table>
<thead>
<tr>
<th>Connector</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video (Main) Out</td>
<td>Level: 1V p-p</td>
</tr>
<tr>
<td></td>
<td>Source Impedance: 75 ohms</td>
</tr>
<tr>
<td>(VITC In)</td>
<td>Format: SMPTE 90-bit, drop frame/non-drop frame</td>
</tr>
<tr>
<td></td>
<td>Line Range: 10 to 40 (all-line mode), 10 to 22 (single-line mode)</td>
</tr>
<tr>
<td>(VITC Out)</td>
<td>Format: SMPTE 90-bit, drop frame/non-drop frame</td>
</tr>
<tr>
<td></td>
<td>Line Range: Two lines, 10 to 20</td>
</tr>
<tr>
<td>Video (Ref) In</td>
<td>Format: NTSC or PAL composite video</td>
</tr>
<tr>
<td></td>
<td>Level: 1V p-p</td>
</tr>
<tr>
<td></td>
<td>Termination: 100K ohms</td>
</tr>
<tr>
<td>Video (Ref) Out</td>
<td>Level: 1V p-p</td>
</tr>
<tr>
<td></td>
<td>Termination: 100K ohms</td>
</tr>
<tr>
<td></td>
<td>Description: Passive loop-thru of Video Ref in</td>
</tr>
<tr>
<td>AES/EBU In</td>
<td>Level: 5 V p-p at 110 ohms (pin 2 hot)</td>
</tr>
<tr>
<td></td>
<td>Connector: 3-pin XLR female per IEC 268-12</td>
</tr>
<tr>
<td>AES/EBU Out</td>
<td>Level: 5 V p-p at 110 ohms (pin 2 hot)</td>
</tr>
<tr>
<td></td>
<td>Connector: 3-pin XLR male per IEC 268-12</td>
</tr>
</tbody>
</table>
Rear Panel Connectors

<table>
<thead>
<tr>
<th>Connector</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word Clock In</td>
<td>Level:</td>
</tr>
<tr>
<td></td>
<td>0 to .5 V (low), 2.0 to 6.0 V (high)</td>
</tr>
<tr>
<td></td>
<td>Connector:</td>
</tr>
<tr>
<td></td>
<td>BNC Female</td>
</tr>
<tr>
<td>Word Clock Out</td>
<td>Level:</td>
</tr>
<tr>
<td></td>
<td>TTL (3.3 V typical)</td>
</tr>
<tr>
<td></td>
<td>Connector:</td>
</tr>
<tr>
<td></td>
<td>BNC Female</td>
</tr>
<tr>
<td>Loop Sync In</td>
<td>Level</td>
</tr>
<tr>
<td></td>
<td>0 to .5 V (low), 2.0 to 6.0 V (high)</td>
</tr>
<tr>
<td></td>
<td>Connector</td>
</tr>
<tr>
<td></td>
<td>BNC Female</td>
</tr>
<tr>
<td>Loop Sync Out</td>
<td>Level</td>
</tr>
<tr>
<td></td>
<td>TTL (3.3 V typical)</td>
</tr>
<tr>
<td></td>
<td>Connector</td>
</tr>
<tr>
<td></td>
<td>BNC Female</td>
</tr>
<tr>
<td>Bi-phase/Tach/GPI/Pilot</td>
<td>Connector:</td>
</tr>
<tr>
<td></td>
<td>25-pin D-subminiature female (DB25)</td>
</tr>
<tr>
<td>(Bi-phase/Tach In)</td>
<td>Frequency Range:</td>
</tr>
<tr>
<td></td>
<td>0 to 76.8 KHz</td>
</tr>
<tr>
<td></td>
<td>Level:</td>
</tr>
<tr>
<td></td>
<td>4.5 to 12V, opto-isolated</td>
</tr>
<tr>
<td></td>
<td>Current:</td>
</tr>
<tr>
<td></td>
<td>10 mA max</td>
</tr>
<tr>
<td></td>
<td>Polarity (bi-phase):</td>
</tr>
<tr>
<td></td>
<td>Both inputs are software programmable</td>
</tr>
<tr>
<td></td>
<td>Polarity (tach):</td>
</tr>
<tr>
<td></td>
<td>“Direction” polarity is software programmable</td>
</tr>
<tr>
<td></td>
<td>Modulo Range:</td>
</tr>
<tr>
<td></td>
<td>2 thru 254</td>
</tr>
</tbody>
</table>
Rear Panel Connectors

<table>
<thead>
<tr>
<th>Connector</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Pilot In)</td>
<td>Level: 100 mV to 5.5 V p-p, differential</td>
</tr>
<tr>
<td></td>
<td>Frequency Range: 50/60 Hz nominal</td>
</tr>
<tr>
<td></td>
<td>Impedance: 200K ohms</td>
</tr>
<tr>
<td>(GPI In)</td>
<td>Description: Four opto-isolator inputs/returns</td>
</tr>
<tr>
<td></td>
<td>Level: 4.5 to 5.5 V</td>
</tr>
<tr>
<td></td>
<td>Current: 10 mA max</td>
</tr>
<tr>
<td></td>
<td>Frequency: Frame-rate max</td>
</tr>
<tr>
<td></td>
<td>Latency: Half frame max</td>
</tr>
<tr>
<td>(GPI Out (TTL))</td>
<td>Description: Two TTL-level outputs</td>
</tr>
<tr>
<td></td>
<td>Level: TTL (3.3 V typical)</td>
</tr>
<tr>
<td></td>
<td>Current: 15 mA</td>
</tr>
<tr>
<td></td>
<td>Frequency: Frame-rate max</td>
</tr>
<tr>
<td></td>
<td>Latency: Half-frame max</td>
</tr>
<tr>
<td>(GPI (Relay))</td>
<td>Description: Four pairs of SPST contacts, normally open</td>
</tr>
<tr>
<td></td>
<td>Load (while switching): .5 A max at 200 VDC</td>
</tr>
<tr>
<td></td>
<td>Load (continuous): 1.5 A max at 200 VDC</td>
</tr>
<tr>
<td></td>
<td>Operate/Release Time: 1 ms</td>
</tr>
<tr>
<td></td>
<td>Repetition Rate: Frame-rate max</td>
</tr>
<tr>
<td></td>
<td>Latency: Half frame max</td>
</tr>
</tbody>
</table>
Rear Panel Connectors

<table>
<thead>
<tr>
<th>Connector</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDI Time Code (MTC) Out</td>
<td>Current Rating: 15 mA current loop</td>
</tr>
<tr>
<td></td>
<td>Rate: 31.25 Kilobaud</td>
</tr>
<tr>
<td></td>
<td>Connector: 5-pin DIN female</td>
</tr>
<tr>
<td></td>
<td>Cable Length: 50 feet (15 meters) max</td>
</tr>
<tr>
<td>Host Serial</td>
<td>Format: Apple Macintosh-compatible serial printer port</td>
</tr>
<tr>
<td></td>
<td>Connector: 8-pin mini DIN female</td>
</tr>
<tr>
<td></td>
<td>Cable Length: 50 feet (15 meters) max</td>
</tr>
</tbody>
</table>
Wiring Diagrams and Pin Assignments

LTC

The SYNC I/O LTC In and LTC Out connectors are balanced XLRs with Pin 2 wired “+” or “hot,” Pin 3 wired “−” or “cold,” and Pin 1 wired to ground (shield). Depending on whether you are connecting a balanced or unbalanced signal to these connectors, different wiring configurations are recommended for optimum signal integrity, especially for long cable runs.

If you are connecting a balanced signal to the SYNC I/O LTC In or LTC Out connectors:

- Pin 1 and ground should be connected at the input only (not at the output). This will prevent ground loops between the shield and the Pin 1 conductor.

If you are connecting an unbalanced signal to the SYNC I/O LTC In or LTC Out connectors:

- Connect only Pin 2 to the “+” signal;
- Connect Pin 1 to ground at all inputs and outputs.

Refer to the following illustration for the correct wiring diagrams.
Bi-phase/Tach OptoCoupler Input
GPI Relay Outputs

GPI Relay Output
GPI (opto) Inputs

GPI (opto) Input
Connector Pin Assignments

Mac Serial Port

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Description</th>
<th>Mac Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>No connection</td>
<td>Pin 2 (HSKiB)</td>
</tr>
<tr>
<td>2</td>
<td>RTS_IN</td>
<td>Request To Send (input to USD)</td>
<td>Pin 1 (HSKoB)</td>
</tr>
<tr>
<td>3</td>
<td>RX_OUT</td>
<td>Transmitted data (output from USD)</td>
<td>Pin 5 input (RXDB–)</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Chassis ground</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>TX_IN</td>
<td>Received data (input to USD)</td>
<td>Pin 3 output (TXDB–)</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>Chassis ground</td>
<td>Pin 8 input (RXDB+)</td>
</tr>
<tr>
<td>7</td>
<td>CTS_OUT</td>
<td>Clear To Send (output from USD)</td>
<td>Pin 7 input (GPiB)</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>No connection</td>
<td>Pin 6 (TXDB+)</td>
</tr>
</tbody>
</table>

Shell

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>Chassis ground</td>
</tr>
</tbody>
</table>

Bi-phase/Tach/GPI/Pilot Port (Accessory Port)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GPOUT0</td>
<td>GPI TTL-level output 0</td>
</tr>
<tr>
<td>2</td>
<td>GPOUT1</td>
<td>GPI TTL-level output 1</td>
</tr>
<tr>
<td>3</td>
<td>GPOUT0_A</td>
<td>GPI Relay 0, contact A</td>
</tr>
<tr>
<td>4</td>
<td>GPOUT0_B</td>
<td>GPI Relay 0, contact B</td>
</tr>
<tr>
<td>5</td>
<td>GPOUT1_A</td>
<td>GPI Relay 1, contact A</td>
</tr>
<tr>
<td>6</td>
<td>GPOUT1_B</td>
<td>GPI Relay 1, contact B</td>
</tr>
<tr>
<td>7</td>
<td>GPOUT2_A</td>
<td>GPI Relay 2, contact A</td>
</tr>
</tbody>
</table>
Connector Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>GPOUT2_B</td>
</tr>
<tr>
<td>9</td>
<td>GPOUT3_A</td>
</tr>
<tr>
<td>10</td>
<td>GPOUT3_B</td>
</tr>
<tr>
<td>11</td>
<td>OPTRETURN</td>
</tr>
<tr>
<td>12</td>
<td>BIPHB_I</td>
</tr>
<tr>
<td>13</td>
<td>BIPHA_I</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>PILOT_IN–</td>
</tr>
<tr>
<td>16</td>
<td>PILOT_IN+</td>
</tr>
<tr>
<td>17</td>
<td>RET0</td>
</tr>
<tr>
<td>18</td>
<td>GPIN0</td>
</tr>
<tr>
<td>19</td>
<td>RET1</td>
</tr>
<tr>
<td>20</td>
<td>GPIN1</td>
</tr>
<tr>
<td>21</td>
<td>RET2</td>
</tr>
<tr>
<td>22</td>
<td>GPIN2</td>
</tr>
<tr>
<td>23</td>
<td>RET3</td>
</tr>
<tr>
<td>24</td>
<td>GPIN3</td>
</tr>
<tr>
<td>25</td>
<td>VDD</td>
</tr>
<tr>
<td>Shell</td>
<td>GND</td>
</tr>
</tbody>
</table>
SYNC I/O Serial Cable Pin Assignments

(Macintosh)

The following table shows the pin assignments for DigiSerial Macintosh.

DigiSerial for Macintosh

<table>
<thead>
<tr>
<th>Mini DIN 8-pin Male to Mini DIN 8-pin Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

(Windows)

The following table shows the pin assignments needed for a SYNC I/O-to-COM cable, to support SYNC I/O Setup software utility on a Windows computer.

Host Serial for Windows

<table>
<thead>
<tr>
<th>Mini DIN 8-pin Male to 9-pin D-Sub Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>Shell</td>
</tr>
<tr>
<td>1, 6, 8 none</td>
</tr>
</tbody>
</table>

Bi-phase/Tach/GPI/Pilot Port Interfacing Notes

- The six opto-isolators are 6N137 devices. The four GPI input ports pass through 390 ohm series resistors to the cathode. The two Bi-Phase/Tach inputs pass through 634 ohm series resistors to the cathode.
- The two TTL-level GPI outputs are driven by a 74FCT541. Each output passes through a 220 ohm series resistor.
- 12 volts is supplied at the connector for the purpose of driving the opto-isolators in film tach applications. It is regulated and can supply up to 100mA.
- For Tach, the “rate” input is “BIPHA_I” and the “direction” input is “BIPHB_I.” The polarity of “BIPHB_I” is software programmable and defaults to “low” for “forward.”
- For Bi-phase, the default polarity relationship between A and B is software programmable. The default setting for “forward” is “A leads B.” This means that the rising edge of A (0° phase) must precede the rising edge of B (90° phase).
- For highest signal quality, use a 25-pin cable with individually shielded conductors.
GPI Relay Wiring for Fader-Start

The Universal Slave Driver provides a total of four Relay-level GPI outputs on pins 3/4, 3-10 of the DB25 connector (see the circuit diagram GPI (TTL)/MTC Outputs).

The GPI Relay outputs are intended to drive Relay loads only.

GPI Triggers

GPI output signals information:

- 0 (relay) = Play
- 1 (relay) = Record Ready
- 2 (relay) = fader start #1
- 3 (relay) = fader start #2
- 4 (TTL) = Stop
- 5 (TTL) = Record

Logical GPI numbers 0 through 3 are associated with GPI relay outputs 0 through 3 (pins 3 through 10). GPI numbers 4 and 5 are associated with GPI TTL outputs 0 and 1 (pins 1 and 2).

GPI TTL Wiring

The circuit can drive approximately 2 mA through a load of 1.6K and maintain a logic high level of 3.3V. In an application where the equipment being controlled has more demanding power requirements, an external buffer or relay circuit must be used. This would typically be constructed as part of a custom electrical interface.

Each GPI TTL output is fully short-circuit protected via a 220-ohm series resistor.

Before attempting to wire any type of custom interface, always check the electrical specifications provided by the equipment manufacturer, including voltage levels, current, loading and polarity. Incorrect wiring may damage your equipment, your SYNC I/O or cause personal injury.
Numerics
14/16 VITC line pair 51
1x 69
256x Slave Clock 10
9-pin 18
 MachineControl serial time code 37
 Port 1 and 2 28

A
absolute time code (and LTC) 42
AC Power In 28
AES/EBU
 choosing as clock reference 37
 connecting 12
 In 27
 Out 27
Auto ID 14
Auto Switch 44
 and freewheel duration 69

B
back panel 26
base clock
 external clock output 58
Bi-Phase/Tach 26, 45, 70
 controls in SYNC I/O Setup 31
 for mag, flatbed, projectors 40
 front panel display of 61
GPI Relay Outputs diagram 84
GPI/Pilot pin assignments 87
 input wiring diagram 82, 83
 positional reference 45
 technical signal information 70
black burst 11
 house video reference 26
black burst (house video reference) 36
BNC 38
 back panel 26

C
character generation (see Window Dub)
clock reference 15
 and clock source 15
 choosing digital source 37
 front panel switch 23
 LEDs 23
 SYNC I/O Setup 29
Clock Source 15
Color, for window dub 54
Connected to SYNC I/O 29

D
DASH 38
DAT signals 69
DF
 drop and non-drop 25
 front panel LED 25
digital
 AES/EBU, Word, Super 69
clock reference front panel 58
clock, setting 37
Down switch 35
drop outs
 and auto-switch LTC/VITC 69
time code freewheel 43
 LTC tips 68

E
emulation
 of 9-pin deck 11
 of 9-pin deck via Remote mode 11
external clock out 58
F
factory defaults, reset 64
fader start
and GPI wiring 90
overview of 62
using 62
wiring instructions 90
Feet+Frame Rate 17
fields (odd/even) indication 29
firmware
upgrading 19
flatbed and Bi-Phase/Tach 40
fps 29
frame edge 65
frame rate
front panel switch 25
SYNC I/O Setup 29
freewheel duration 30
and auto-switch LTC/VITC 69
front panel display of 59
front panel
Lockout mode 33
switches and displays 23

G
generate
time code gen/regen 47
Generator
Bi-phase Preset 31
controls for 35
Preset Mode 48
Reference Rule 48
Generator/Parameter Controls 35
GPI
and fader start 62
back panel connector 26
pinout 82
TTL wiring 90
GPI (opto) Inputs 85

H
help 5
Host Serial 26
house sync
connecting 11

I
Idle MTC Enabled
front panel 53
in SYNC I/O Setup 53
installation
SYNC I/O and a CPU 7
internal clock 40

L
LED Time Code Display 24
LEDs 24
legacy interfaces 9
Locked 16, 25
LED and troubleshooting 25
Locked Indicator 16
Loop Master 23
Loop Sync 14, 28
Auto ID 14
connecting 8
LTC 12
and clock reference 38
generation/regeneration 49
In (back panel) 27
LTC 1 (fastest) 39
LTC 2 (average) 39
LTC 3 (smoother) 39
Out (back panel) 27
output level (SYNC I/O Setup) 30
output level/gain (front panel) 60
positional reference 42
servo gain 60
wiring diagrams 81

M
Mac Serial Port
pin-outs 87
MachineControl 18
mag and Bi-phase/Tach 70
monotonic VITC 67
MTC 53
and Idle MTC Output 30
burst mode 53
generation/regeneration 53
Out (back panel) 27
pinout 85
time code output 27
MTC Out 13
N
NTSC
 about 30
 or PAL, selecting 61
null clock 69

O
operating 33
oscillator reset 63

P
PAL
 about 30
 and Pilot tone speed 39
 or NTSC, selecting 61
phase
 see Bi-phase 70
Pilot
 back panel port 26
 pinout 82
 Tone speed 39
 Tone, general 39
Pin 1, 2, 3 (LTC) 81
Pitch Memory 42
 enabled (SYNC I/O Setup) 30
 front panel (pitch hold) 60
Port Relinquished 29
positional reference 16
 about 42
 front panel LEDs 25
 front panel switch 25
 SYNC I/O Setup 29
Pro Tools|24 MIX
 clock connections 9
Pull Down
 actual rates 24
Pull Rate 29
Pull Up and generating 47
Pull Up and Pull Down
 actual rates 24
Pulses Per Frame
 configuring 40
 front panel 61

Q
Quadrature Sync 70

R
Read/Regeneration Mode 47
reference
 clock, digital signal information 69
 list of supported 2
regenerating time code 47
relays 62
Remote 9-Pin Deck Emulation mode
 connections 11
Remote Mode
 about 33
 and SYNC I/O Setup 33
 connections for 9-pin deck emulation 11
 LED for 25
Remote-Only Mode 33
Resolver
 Locked 29
Resolver Locked 29
RUN/STOP/CLEAR 35

S
sample rate 17
 and pull up/down rates 24
 and Speed Cal status display 25
 front panel (sample frequency) 58
 front panel LED displays 24
SECAM 30
 use PAL 61
serial port 26
serial time code
 and clock reference 37
 special clock information 37
 using for positional reference 45
Servo Gain 60
Slave Clock
 256x clock information 38
Slave Clock (see SuperClock) 37
Slave Clock (SYNC I/O Setup) 29
Speed Cal 16
 display in SYNC I/O Setup 29
 front panel LED and troubleshooting 25
Speed Cal Indicator 16
Status
 in SYNC I/O Setup 29
 LEDs 25
Super Clock
 choosing as clock reference 37
SYNC I/O 1
 checking status in SYNC I/O Setup 29
 control options for 33
SYNC I/O Setup
 overview 28
 setting up 18
 Status 29
 time code display 29
 window, features 19
 wiring diagram for Windows 89

T
Tach
 additional signal information 70
 connector, back panel 26
 technical support 5
 time code
 drop outs, freewheeling 43
 generating/regenerating 47
 MIDI (MTC output) 27
 serial 37
 SYNC I/O Setup display 29
 Time Code Rate 17
 TTL 85
 wiring 90

U
Universal Slave Driver
 front panel operation 23
Up switch 35
 updating firmware 19
 USD Emulation mode 34
User Sync
 see base clock 29

V
Variable Speed Override (VSO) 31, 41
Vertical Position 54
 connecting 11
 format, SYNC I/O Setup 30
 managing inputs 65
 NTSC vs PAL, front panel 61
 odd/even field, display of 29
Video In
 back panel connector 27
 wiring 27
Video Ref
 and terminator for 26
Video Ref In
 connecting 11
Video Ref Out
 back panel connector 26
Video Ref Thru
 connecting 12
VITC
 as positional reference 50
 connector for positional reference 27
 default line pair 51
 Generate Lines (SYNC I/O Setup) 30
 Generate Lines, front panel details 59
 Insertion Enabled (SYNC I/O Setup) 30
 Insertion, front panel details 58
 monotonic 67
 positional reference 43
 Read Lines (SYNC I/O Setup) 30
 Read Lines, defaults 30
 Read Lines, front panel details 58
 related settings for 44
 timing rule 67
 video source rule 50
VSO 31
VTR emulation (see also Remote 9-Pin Deck Emulation) 11

W
window dub
 front panel enable 59
 generating 53
 setting color 54
 vertical position 54
wiring
 SYNC I/O Setup for Windows 89
 wiring diagrams 81
Word clock
 1x clock 38
 about 69
 base clock output 58
 choosing as clock reference 37
 connecting 12
 In connector 28
 Out connector 28
www.digidesign.com 5